Robotics Survey Pieter Abbeel, David Abbink, Farshid Alambeigi, Farshad Arvin, Nikolay Atanasov, Ruzena Bajcsy, Philip Beesley, Tapomayukh Bhattacharjee, Jeannette Bohg, David J. Cappelleri, Qifeng Chen, I-Ming Chen, Jackie Cheng, Cynthia Chem, Chemo, Steve Chryso Collins, David Correa, Brandon DeHart, Katie Driggs-Campbell, Nima Fazeli, Animesh Garg, Maged Ghoneima, Tobias Haschke, Kris Hauser, David Held, Yue Hu, Josie Hughes, Soo Jeon, Dimitrios Kanoulas, Jonathan Kelly, Oliver Kroemer, Changlio Liu, Maud, Martin, and Sajum. buro Matunaga, Satoshi Miura, Norrima Mokhtar, Elena De Momi, Christopher Nehaniv, Christopher Nielsen, Ryuma Niyama, Allison Okamura, Necmiye Ozay, Jamie Paik, Frank Park, Karthik Ramani, Carolyn Ren, Jan Rosell, Jee-Hwan Ryu, Tim Salcudean, Oliver Scheider, Peter Sommons, Alva Schoen, Stone ne, Michael Tolley, Tsu-Chin Tsao, Michiel van de Panne, Andy Weightman, Alexander Wong, Helge Wurdemann, Rong Xiong, Chao Xu, Geng Yang, Junzhi Yu, Wenzhen Yuan, Fu Zhang, Yuke Zhu
S/N Name Programme 1 AHMAD IBRAHIM Doctor of Philosophy 2 ALI ABDELAZIEM ABDELGAIED ABDELRAHMAN Doctor of Philosophy 3 CHEN MENGXIN Doctor of Philosophy 4 DENG SIYAN Doctor of Philosophy 5 HE YANCHAO Doctor of Philosophy 6 HERNANDEZ MURALLES MARIO ARTURO Doctor of Philosophy 7 HO CHIN GUAN Doctor of Philosophy 8 LI HAOPENG Doctor of Philosophy 9 LI YUN Doctor of哲学10 Liew Wen Jie Melvin哲学博士学位11 Meng Fanxu哲学博士12 Mishra Soumya Ranjan哲学博士13 Moay Zi Kuang哲学哲学博士14 Padhy Shakti Prasad哲学哲学博士15 POH WEI哲学教会哲学哲学教会医生 of Philosophy 20 SYED ABDULLAH BIN SYED AHMAD ALKAFF Doctor of Philosophy 21 WANG LEYAN Doctor of Philosophy 22 WANG YAMIN Doctor of Philosophy 23 WANG YONG Doctor of Philosophy 24 WU YAO Doctor of Philosophy 25 XIAO XINGCHI Doctor of Philosophy 26 YANG JIEFU Doctor of Philosophy 27 ZHANG CHU Doctor of Philosophy
黄坤1 吴玉峰1 刘俊臣1 常耿2 潘旭超2,* 翁小迪3,* 王永刚1 雷明1,* 摘要 随着科技的发展和生活水平的提高,基于水凝胶的应变传感器受到了越来越多的关注。然而,制造具有理想机械和压阻性能的水凝胶应变传感器仍然具有挑战性。本文提出了一种双层柔性水凝胶传感器,该传感器由碳纳米管(CNT)和聚乙烯醇(PVA)制成,具有高达 415% 应变的高拉伸性和 92% 应变的超压缩性,以及相当大的电导率(1.11 S m -1 )。水凝胶传感器在整个检测范围内表现出很好的线性度、出色的耐用性和在 1000 次加载-卸载循环中稳定的相对电阻变化(∆𝑅𝑅 0 ⁄)。这些优异的性能归功于一种新的双层结构设计,即在纯坚固的 PVA 基底上沉积一层薄薄的 CNTs/PVA 导电传感器层。结合快速响应时间(拉伸时为 508 毫秒,压缩时为 139 毫秒)和生物相容性,这种新型传感器具有作为可穿戴传感器的巨大潜力,可用于表皮传感应用,例如检测人体关节的弯曲、吞咽、呼吸等。此外,CNTs/PVA 水凝胶可以利用其内部离子来操作电子屏幕,甚至可以使用机械信号来调制光信号。所有这些都证明了 CNTs/PVA 水凝胶作为应变传感器的巨大优势。
摘要:xa13是一个隐性多效基因,对水稻抗病性起正向调控作用,对水稻育性起负向调控作用,严重制约了其在水稻育性中的应用。本研究利用CRISPR/Cas9基因编辑技术删除Xa13基因启动子部分序列,包括病原菌诱导表达元件,使编辑后的启动子区水稻失去病原菌诱导基因表达能力,但不影响叶片和花药中背景基因的表达,从而获得抗病性和正常产量。研究还筛选出一株删除目的序列、分离T 1 代(无转基因株系)外源转基因片段的抗病、育性正常植株家系,并对T 2 代水稻的重要农艺性状进行了研究。结果表明,添加/不添加外源DNA的T 2 代水稻在抽穗期、株高、单株穗数、穗长和田间结实率等方面与野生型均无统计学差异。成功转化2个重要常规水稻品种空育131(KY131,耿/粳稻)和黄华占(HHZ,鲜/籼稻),并获得抗病、丰产材料,是目前我国2个经过改良后可直接用于生产的重要常规水稻品种。转基因水稻(KY-PD和HHZ-PD)叶片中Xa13基因在病原菌侵染后没有被诱导表达,表明此方法可普遍有效应用,有利于推动xa13这一隐性抗病多效基因在水稻抗白叶枯病方面的实际应用。通过编辑基因非编码区调控基因表达的研究,为今后开展分子设计育种提供了新思路。
已知抽象电离辐射会引起对造血系统的重大损害,这主要损害骨髓功能。叶酸在单碳代谢和各种细胞过程(包括DNA合成和修复)中起着至关重要的作用。本研究研究了叶酸参数对X射线照射的雄性兔子中血液学参数和骨髓组织学的潜在辐射保护作用。实验设计包括四个组:(1)对照,(2)补充叶酸,(3)X射线暴露,以及(4)补充叶酸和X射线的合并。血液学分析表明,X射线暴露后,白细胞(WBC),红细胞(RBC)和血小板(PLT)计数显着下降,表明辐射诱导的造血抑制。值得注意的是,补充叶酸部分恢复了这些参数,表明其在促进造血恢复中的作用。此外,对骨髓的组织学检查显示,叶酸处理的组的细胞性增加,进一步支持其针对辐射引起的骨髓抑制的保护作用。这些发现表明,补充叶酸可能会减轻电离辐射的不良造血作用,从而强调其作为辐射保护剂的潜力。关键字。放射保护,叶酸,血液学,骨髓,组织病理学。引入辐射引起的对造血系统的损害是电离辐射暴露的有据可查的结果,主要影响骨髓功能和外周血细胞计数。电离辐射会产生活性氧(ROS),导致氧化应激和细胞凋亡,尤其是在造血干细胞和祖细胞中[1,2]。叶酸是参与DNA合成和修复的必需B维生素,已假设具有辐射保护性能。急性辐射综合征(ARS)通常称为辐射疾病,是由于全身暴露于高剂量的电离辐射而发生的。这种情况的特征是生化参数严重中断,可能会对多个器官系统产生不利影响,包括造血[3],心血管[4]和胃肠道系统[5]。此外,大脑发育尤其容易受到电离辐射的影响,如大量研究所证明[6]。产前暴露于X-radiation与人类和实验动物的大脑的组织学变化有关,从而导致学习和记忆障碍[7]。造血干细胞以其高放射敏感性而闻名,在维持血细胞计数中起着至关重要的作用,这仍然是评估疾病状况的关键诊断工具。长时间暴露于X射线会导致外周血细胞谱发生显着改变,包括由于血小板水平降低而导致中性粒细胞计数,严重的淋巴细胞减少症和血小板减少症。电离辐射通常会抑制骨髓活性,导致外周循环中血细胞的产生降低,尽管其对大多数细胞或组织的直接影响相对较少[8]。在Geng等人的一项研究中。在Geng等人的一项研究中。全身辐射的全身作用主要在血液学,胃肠道和脑血管系统中表现出来,从而导致广泛的功能障碍和器官损伤[9,10]。这些见解强调了电离辐射对细胞和全身水平的广泛而复杂的生物学影响。造血干细胞高度放射敏感,在监测疾病状况中起着至关重要的作用,血小板计数是可靠的诊断指标。暴露于0.5至1 Gy的电离辐射剂量可能会导致外周血细胞谱的显着变化,包括中性粒细胞计数升高,严重的淋巴细胞减少症和血小板水平降低(血小板减少症)。淋巴细胞特别容易受到辐射诱导的损伤,即使在低剂量为0.05-0.15 Gy的情况下也经历了相间死亡。电离辐射抑制骨髓活性,导致外周血细胞产生的减少,尽管它对大多数细胞或组织造成了最小的直接伤害[8]。辐射的全身效应扩展到各种器官系统,包括胃肠道,脑和循环系统,导致了广泛的器官功能障碍[9,10]。辐射诱导的骨髓抑制和降低的外周血计数突出了造血恢复在治疗辐射损伤中的重要性[11]。Li及其同事(2014)[12]的研究表明,辐射不仅减少造血细胞数量,而且还刺激其余细胞的激活。[8],暴露于
靶标富集的纳米孔测序和从头组装揭示了 CRISPR-Cas9 在人类细胞中诱导的 1 个复杂的靶基因组重排的共现 2 3 4 5 Keyi Geng 1、Lara G. Merino 1、Linda Wedemann 1、Aniek Martens 1、Małgorzata Sobota 1、6 Yerma P. Sanchez 1、Jonas Nørskov Søndergaard 1、Robert J. White 2、Claudia Kutter 1 * 7 8 1 瑞典卡罗琳斯卡医学院生命科学实验室微生物学、肿瘤和细胞生物学系 10 2 约克大学生物系,英国约克 11 * 通讯作者。电话:+46 (0) 70 4933896。电子邮件:12 claudia.kutter@ki.se 13 14 15 标题:Xdrop-LRS 揭示 CRISPR-Cas9 的靶向效应 16 17 18 关键词 19 意外的 CRISPR-Cas9 编辑、组合基因组复制-倒置-整合、20 基于液滴的靶向富集、长读测序、从头序列组装 21 22 23 摘要 24 CRISPR-Cas9 系统被广泛用于通过双 25 向导 RNA 永久删除基因组区域。CRISPR-Cas9 可能会引起基因组重排,但持续的技术发展使得表征复杂的靶向效应成为可能。我们将创新的基于液滴的靶向富集方法与长读测序相结合,并将其与定制的从头序列组装相结合。这种方法使我们能够在靶基因组位点内以千碱基规模剖析序列内容。我们在此描述了 Cas9 造成的广泛基因组破坏,包括靶区域基因组重复和倒置的等位基因共现,以及外源 DNA 的整合和聚集的染色体间 DNA 片段重排。此外,我们发现这些基因组改变导致功能异常的 DNA 片段,并可能改变细胞增殖。我们的研究结果拓宽了 Cas9 删除系统的结果范围,强调了细致的基因组验证的必要性,并引入了数据驱动的工作流程,从而能够以卓越的分辨率详细剖析靶序列内容。
周黄 a 、陈成汉 a 、阿卜杜萨拉姆·阿卜都克里木 a 、子浩博 a 、陈伟 a 、陈迅 a,t 、陈云华 h 、陈成 o 、程兆堪 p 、崔相宜 m 、范英杰 q 、方德清 r 、毛昌波 、付孟廷 g 、耿力生 b,c,d 、卡尔·吉博尼 a 、顾林辉 a 、郭旭源 a 、何昌达 a 、何金荣 h 、黄迪 a 、黄彦林 s 、侯汝泉 t 、吉向东 l 、军永林 、李晨翔 a 、李家福 、李明传 h 、林淑 n 、李帅杰 m 、清林 e,f 、刘江来 a,m,t,1 、陆晓英 j,k 、罗灵隐克,罗云阳 f , 马文波 a , 马尔玉刚 , 毛亚军 g , 孟跃 a,t , 宁旭阳 a , 宁春齐 h , 钱志成 a , 香香任 j,k , Nasir Shaheed j,k , 尚松 h , 尚晓峰 a , 沉国芳 b , 林斯 a , 孙文亮 h , 谭安迪 l , 陶毅 a,t , 安庆王 j,k , 王萌 j,k , 王秋红 r , 王少波 a,1 , 王四光 g , 王伟 o , 王秀丽 n , 王周 a,t,m , 魏月欢 p , 吴萌萌 o , 吴伟豪 a , 夏经凯 a , 肖孟娇 l , 肖翔 o , 谢鹏伟 m , 严彬彬 a,t , 严希宇 s ,杨吉军 a 、杨勇 a 、于春旭 q 、袁居民 j,k 、袁哲 r 、曾新宁 a 、张丹 l 、张敏珍 a 、张鹏 h 、张世波 a 、张舒 o 、张涛 a 、张迎新 j,k 、张媛媛 m 、李赵 a 、郑其斌 s 、周吉芳 h 、宁周 a,t, * ,周小鹏 b , 周勇 h , 周玉波 a
刘志平(2023/02-2023/05,现为南京大学博士生)、陈逸飞(2023/01-2023/04,剑桥大学研究生)、张蕾(2021/12-2023/04,现为香港科技大学广州分校博士生)、刘霞(2021/08-2023/04,中科院博士生)、张浩凯(2021/10-2023/04,清华大学博士生)、朱成宏(2021/12-2023/04,现为香港科技大学广州分校博士生)、荆明睿(2022/05-2023/04,现为香港科技大学广州分校博士生)、余湛(2021/11-2023/05,现为新加坡国立大学博士生)、宋志新(2020/04-2021/07,现于佐治亚理工学院攻读博士学位)、赵选强(202008-202208,现于香港大学攻读博士学位)、赵本池(2020/10-2022/03,现于大阪大学攻读博士学位)、陈然柳(2020/08-2021/08,现于哥本哈根大学攻读博士学位)、蒋佳庆(2020/07-2021/04,现于加州理工学院攻读博士学位)、曹晨峰(2020/07-2020/10,现于香港科技大学攻读博士学位)、余思卓(2021/01-2021/10,现于巴黎-萨克雷大学攻读博士学位)、夏子涵(2021/04-2022/03,现于南加州大学学生)、王庆河(2020/09-2021/09,现于加州大学洛杉矶分校学生)、王子河(2020/07-2021/07,现百度软件工程师)、莫印(2021/09-2021/12,百度→香港科技大学广州)、李罗珍(2022/08-2022/11,现荷兰代尔夫特理工大学研究生)、朱成凯(2021/08-2023/04,现香港科技大学广州)博士生)、耿刘(2021/08-2023/04,现为香港中文大学(深圳)博士生)、姚宏顺(2021/08-2023/04,研究生)、王振铎(2022/07-2022/09)、施凯彦(2021/04-2021/07)、叶瑞林(2021/09-) 2022/01), 黄嘉欣(2021/09-2022/01)、王家辉(2021/06-2021/08)、宋艺轩(2021/06-2021/08)、李茂然(2021/02-2021/07)、刘迎建(2021/01-2021/07)、严子贤(2020/09-2021/09)、席韩哲(2021/05-2021/09)、陈一方(2020/03-2020/06)、孟泽林(2020/04-2021/07)。
由于生物和遗传决定论的对立文化影响(Comfort,2018;Plomin,2019),以及量化经验引起的大脑变化的方法限制,情境在神经科学和精神病学中的作用直到最近才被人们忽视。然而,在上个世纪中叶,一些关键的实验和观察使其相关性开始显现。Donald Hebb 曾轶事地报告说,接触复杂的环境可以提高解决问题的行为能力(Hebb,1947)。Hubel 和 Wiesel 证明了早期感觉剥夺对视觉皮层解剖学和生理学的巨大影响(Wiesel & Hubel,1963)。 Rosenzweig 及其合作者的出色研究证明了环境作为可测试的科学变量的影响,并表明生活条件的质量在从形态到化学的多个层面上塑造大脑和行为(Rosenzweig,1966 年;van Praag 等人,2000 年)。最近,个人环境在塑造大脑活动方面的关键作用越来越受到重视,表明生活条件对大脑回路产生普遍影响并决定心理健康(Castegnetti 等人,2021 年,#9;Geng 等人,2021 年;Mason 等人,2017 年;Meyer-Lindenberg 和 Tost,2012 年,South 等人,2018 年;Tost 等人,2019 年)。环境的概念进一步演变为更广泛的情境概念,它涉及外部和内部条件(例如环境设置和心态),后者也取决于个人的历史(Benedetti,2008;Branchi,2022b;Di Blasi 等人,2001;Gilbody 等人,2006;Woltmann 等人,2012)。尽管进行了各种有价值的尝试(Zimmermann 等人,2007),但并没有普遍接受的情境操作定义,不同学科之间存在显著差异。在这里,情境被定义为个人对环境的体验。因此,它不仅包含体验的客观特征,还包括个体在接触该体验时的个性和心理状态(Klandermans 等人,2010 年;Wallsten 等人,1999 年)。从这个角度来看,心理学和精神病学通常通过问卷和访谈来评估情境(Danese 和 Widom,2020 年;Fakhoury 等人,2002 年;Kim 等人,2016 年)。大多数描述情境对大脑和行为影响的理论框架都假定情境因素对于在离散功能状态之间转变至关重要,例如从健康状态到病理状态。例如,早年或成年期的创伤或不良经历被解释为全有或无大脑功能的转换(Nutt 和 Malizia,2004 年;
34 35应当应解决36 37 Mohammed A. Mostajo-Radji 38活细胞生物技术发现实验室39基因组学院40加利福尼亚大学圣克鲁斯大学41 2300 Delaware Ave Ave 42 Santa Cruz,CA,95060,95060 43 United States 44