•从数据中学习,Yaser S. Abu-Mostafa,Malik Magdon-Ismail,Hsuan-Tien Lin,2012年。(书籍网页:http://work.caltech.edu/textbook.html)•使用Scikit-Learn,keras和Tensorflow的动手机器学习:构建智能系统的概念,工具和技术•机器学习的第一门课程,第2版,西蒙·罗杰斯(Simon Rogers),马克·吉罗拉米(Mark Girolami),CRC出版社,2017年。ISBN-13:978-1-4987-3856-9•机器学习精致,第2版,Jeremy Watt,Reza Borhani,Aggelos K. K. K. K. Katsaggelos,Cambridge University Press,2020(在线提供:https://ciml.info)•机器学习,汤姆·米切尔(Tom Mitchell)。(http://www.cs.cmu.edu/af/afs/cs.cmu.edu/user/user/mitchell/mitchell/ftp/ftp/ftp/mlbook.html)•机器学习简介,EthemAlpaydın,第3版,第3版,MIT Press,2015年。•模式分类,第2版,R。O。Duda,P。E。Heart,D。G。Stork,Wiley,Wiley,2000。•深度学习,伊恩·古德法罗(Ian Goodfellow),Yoshua Bengio,亚伦·库维尔(Aaron Courville),麻省理工学院出版社,2016年。(在线提供:https://www.deeplearningbook.org/)
早上好!我叫……。今天早上我们先做一点运动。每个人都站起来,找一个搭档。你们轮流数到三,每数一个数字。(演示)。有什么问题吗?你们有一分钟的时间,开始……。用手指按一到五的量表,一表示容易,五表示困难,告诉我这有多难。我们再做一次,但这次不是说一,而是鼓掌。(演示)。你们有一分钟的时间,开始……使用与之前相同的量表,告诉我这有多难。为什么更难?我们将再次增加难度;不是说二,而是跺脚。(演示)。你们有一分钟的时间,开始……使用与之前相同的量表,告诉我这有多难。现在,我们将回到最初的任务,说 1、2、3。你们有一分钟的时间,开始……感觉怎么样?为什么更容易?这是你在 Goodfellow 度过的时光的一个比喻,有人能分享一下这个比喻吗?(我们每天都在增加训练强度,挑战你比前一天做得更好,这样当你进入战场时,任务就会更容易)。与健身类似……挑战身体会让你的身体迎难而上,变得更好。动机评论 N/A
coimbatore。3 Wayanad苏丹·贝瑟里(Sultan Bathery)唐·博斯科学院(Don Bosco College)数学系助理教授。 抽象的梦立是人工智能中的一个新兴领域,旨在通过计算模型复制人类梦的经验。 本文比较了用于梦想生成的各种AI算法,评估其性能,创造力和计算效率。 我们探索生成的对抗网络(GAN),变化自动编码器(VAE)和基于变压器的模型,提供了对其优势和劣势的全面分析。 我们的结果表明,每个模型都有独特的优势,这表明了未来研究的潜在混合方法。 关键字:梦幻,AI,GAN,VAE,变形金刚,创造力,连贯性,计算效率,FID,IS,EEG信号。 I. 引言梦想已经迷住了人类已经有几个世纪了,通常被视为窗户进入潜意识的思想。 近年来,人工智能在创意领域取得了长足的进步,包括文本,图像和音乐的产生。 使用AI的梦幻发电试图模拟梦境的体验,创造出模仿人类梦的新颖而富有想象力的成果。 本文旨在比较该领域中领先的AI算法,重点是它们产生连贯和创造性的梦想的能力。 II。 文献综述A. Goodfellow等人引入的生成对抗网络(GAN),甘恩由两个神经网络组成,一个生成器和一个鉴别器,它们通过对抗过程同时训练。 iii。3 Wayanad苏丹·贝瑟里(Sultan Bathery)唐·博斯科学院(Don Bosco College)数学系助理教授。抽象的梦立是人工智能中的一个新兴领域,旨在通过计算模型复制人类梦的经验。本文比较了用于梦想生成的各种AI算法,评估其性能,创造力和计算效率。我们探索生成的对抗网络(GAN),变化自动编码器(VAE)和基于变压器的模型,提供了对其优势和劣势的全面分析。我们的结果表明,每个模型都有独特的优势,这表明了未来研究的潜在混合方法。关键字:梦幻,AI,GAN,VAE,变形金刚,创造力,连贯性,计算效率,FID,IS,EEG信号。I.引言梦想已经迷住了人类已经有几个世纪了,通常被视为窗户进入潜意识的思想。近年来,人工智能在创意领域取得了长足的进步,包括文本,图像和音乐的产生。使用AI的梦幻发电试图模拟梦境的体验,创造出模仿人类梦的新颖而富有想象力的成果。本文旨在比较该领域中领先的AI算法,重点是它们产生连贯和创造性的梦想的能力。II。 文献综述A. Goodfellow等人引入的生成对抗网络(GAN),甘恩由两个神经网络组成,一个生成器和一个鉴别器,它们通过对抗过程同时训练。 iii。II。文献综述A. Goodfellow等人引入的生成对抗网络(GAN),甘恩由两个神经网络组成,一个生成器和一个鉴别器,它们通过对抗过程同时训练。iii。gan已在图像生成,样式传输和创造性的创建中广泛使用[1]。B. Kingma和Welling提出的变异自动编码器(VAE)VAE是通过变异推断学习数据的基本分布的生成模型[2]。它们已应用于各种任务,包括图像和视频生成,提供了生成概率的方法。C.基于变压器的模型变压器,尤其是基于Vaswani等人引入的架构的变压器,已经彻底改变了自然语言处理。诸如GPT-3和DALL-E之类的模型利用变压器来生成具有显着连贯性和创造力的文本和图像[3]。方法论
作为一名上尉,他曾在韩国布拉格堡、古德费洛空军基地和佐治亚州戈登堡担任营牧师。作为一名少校,他曾担任戈登堡第 116 军事情报组/国家安全局牧师、第 1 装甲师/MND-N 副师牧师,然后担任美国陆军欧洲牧师办公室执行官。晋升为中校后,他成为美国陆军训练和教义司令部的牧师人事经理/部队结构官,然后担任堪萨斯州赖利堡第一步兵师牧师,并被派往伊拉克巴格达担任联合部队陆地组成司令部牧师,负责“坚定决心行动”(CJFLCC-I)。从美国陆军战争学院 (USAWC) 毕业并晋升为上校后,他成为美国陆军网络卓越中心 (佐治亚州戈登堡) 的高级牧师。他被派往阿富汗喀布尔,担任“坚决支援行动”指挥官和驻阿富汗美军的牧师。重新部署后,他担任美国陆军牧师中心和学校 (南卡罗来纳州杰克逊堡) 的副指挥官和培训主任。随后,他被选为华盛顿刘易斯-麦科德联合基地的第一军团牧师。他最后担任宗教支持行动中心的行动和培训主管。
由于使用深度学习的生成建模取得了突破。Ian Goodfellow 在人脸生成方面的工作 [ 5 ] 和 StyleGan [ 7 ]、Openai 的 GPT-2 [ 9 ] 或最近的 Mark Zuckerberg [ 4 ] 和 Bill Gates [ 10 ] 的深度伪造视频是 AI 生成内容的突出例子,这些内容几乎与人类生成的内容没有区别。这些例子还强调了生成 AI 带来的一些重大社会、道德和组织挑战,包括安全性、隐私、所有权、质量指标和生成内容的评估。本次研讨会的目标是汇集 HCI 和 AI 领域的研究人员和从业者,从 HCI 角度探索生成建模的机遇和挑战。我们设想,创建物理和数字工件的用户体验将成为人类和人工智能的合作伙伴关系:人类将扮演规范、目标设定、指导、高级创造力、策划和治理的角色。人工智能将通过灵感、低级创造力和细节工作以及大规模测试想法的能力来增强人类的能力。鼓励以短文、长文和演示的形式提交,并遵循 IUI 论文和演示指南,但不限于以下主题:
●什么是genai:AIGC是通过获取人类的指示,从中获得含义以及使用该目标信息来创建内容根据其知识和理解来创建的。大规模模型近年来在AIGC中具有重要意义,因为它们可以提取出色的意图,从而可以提取更好的生成结果。随着数据和模型大小的增加,模型可以学习的分布变得更加广泛,对现实变得更加真实,从而创建了更高质量和更现实的内容。本调查对随着时间的推移的生成模型的发展进行了详尽的分析,并概述了它们从单峰到多模式相互作用的AIGC中的基本元素和当前的发展。我们从非模式的角度提供了生成任务以及相关的文本和图像模型。II。 AI和生成的历史:生成AI,也称为生成建模,是人工智能(AI)的一个分支,致力于创建能够生成类似于给定数据集的新数据的模型。 该领域的历史悠久数十年,由于深度学习和神经网络的发展,近年来取得了重大进步。 以下是生成AI的历史的详细概述:2010年代见证了生成AI的重大突破,这在很大程度上是由深度学习进步所驱动的。 AutoCododers(VAE)由Kingma和Welling在2013年推出,为学习潜在数据表示提供了一个概率框架。 生成对抗网络(GAN),由Ian Goodfellow等人提出。II。AI和生成的历史:生成AI,也称为生成建模,是人工智能(AI)的一个分支,致力于创建能够生成类似于给定数据集的新数据的模型。该领域的历史悠久数十年,由于深度学习和神经网络的发展,近年来取得了重大进步。以下是生成AI的历史的详细概述:2010年代见证了生成AI的重大突破,这在很大程度上是由深度学习进步所驱动的。AutoCododers(VAE)由Kingma和Welling在2013年推出,为学习潜在数据表示提供了一个概率框架。生成对抗网络(GAN),由Ian Goodfellow等人提出。在2014年,基于对抗性训练引入了一种新颖的生成建模方法。gan由两个神经网络组成,一个发电机和一个歧视器,在最小值游戏框架中同时训练有素,在该框架中,生成器学会了生成逼真的数据,而歧视器则学会区分真实数据和生成数据。gan在生成高质量的图像,音频,文本和其他类型的数据方面取得了显着成功,从而导致艺术生成,图像合成和数据增强的广泛应用
简介在过去几年中,生成模型和姿势估计方法的发展取得了重大进展(Goodfellow 等人 2014 年)、(G¨uler、Neverova 和 Kokkinos 2018 年)、(Cao 等人 2019 年)。这些方法已进一步发展为基于人工智能的舞蹈生成方法,同时旨在实现高质量的输出、逼真的身体动作、多种多样的舞蹈风格以及音乐与舞蹈之间的适当同步(Chan 等人 2019 年)、(Li 等人 2020 年)。对于大多数这些工作,目标要么是通过使用视频到视频的转换将动作从经验丰富的舞者转移到缺乏经验的舞者,要么是创建一系列新的舞蹈动作。从这个角度来看,舞蹈被认为是动作的选择,有时是在音乐下表演的。舞蹈界认为舞蹈不仅仅是动作的选择。舞蹈是一种通过动作传达思想的艺术形式,必须有逻辑发展的基础(Smith-Autard 2010)。创作舞蹈就是创作一件艺术品。根据(Robinson 2009)的说法,“它涉及发挥你的想象力来创造新事物,想出解决问题的新方法”。(Redfern 1973)描述道,“当舞蹈被设计成一个整体或结构化的东西时,它就可以被视为艺术,其中组成部分的关系和连贯性增加了趣味性和重要性”。创作者创作的舞蹈意在传达一种思想或情感,例如,可以是关于人、事件、情绪,甚至是动作本身(Smith-Autard 2010)。动作内容选择如下:
R. S. Boyer和J. S. Moore。Boyer-Moore定理卖者。https://www.cs.utexas.edu/users/moore/best- indeas/nqthm/index.html。D. Cofer,R。Sattigeri,I。Amundson,J。Babar,S。Hasan,E。W。Smith,K。Nukala,D。Osipychev,M。A。Moser,J。L。Paunicka,D。D。D. D. Margineantu,L。Timmerman,L。Timmerman,and J. Q. Q. Q. stringfield。具有运行时保证的碰撞避免神经网络的飞行测试。2022年IEEE/AIAA 41st Digital Avionics Systems会议(DASC),第1-10页,2022年9月。R. Desmartin,G。O。Passmore,E。Komendantskaya和M. Daggit。 CheckInn:Imandra中的范围范围神经网络验证。 在第2022页中:第24届国际宣言节目原则和实践研讨会,佐治亚州第比利斯,9月20日至2022年,第3:1-3:14页。 ACM,2022。 S. Grigorescu,B。Trasnea,T。Cocias和G. Macesanu。 对自动驾驶的深度学习技术的调查。 Field Robotics Journal,37(3):362–386,2020。 ISSN 1556-4967。 W. A. Hunt,M。Kaufmann,J。S。Moore和A. Slobodova。 使用ACL2进行工业硬件和软件验证。 皇家学会的哲学交易A:数学,物理和工程科学,375(2104):20150399,2017年9月。 O. Isac,C。W。Barrett,M。Zhang和G. Katz。 通过证明生产的神经网络验证。 2022计算机辅助设计(FMCAD)中的形式方法,第38-48页,2022年。 K. D. Julian,J。Lopez,J。S. Brush,M。P. Owen和M. J. Kochenderfer。 飞机避免碰撞系统的政策压缩。R. Desmartin,G。O。Passmore,E。Komendantskaya和M. Daggit。CheckInn:Imandra中的范围范围神经网络验证。在第2022页中:第24届国际宣言节目原则和实践研讨会,佐治亚州第比利斯,9月20日至2022年,第3:1-3:14页。ACM,2022。S. Grigorescu,B。Trasnea,T。Cocias和G. Macesanu。对自动驾驶的深度学习技术的调查。Field Robotics Journal,37(3):362–386,2020。ISSN 1556-4967。W. A.Hunt,M。Kaufmann,J。S。Moore和A. Slobodova。 使用ACL2进行工业硬件和软件验证。 皇家学会的哲学交易A:数学,物理和工程科学,375(2104):20150399,2017年9月。 O. Isac,C。W。Barrett,M。Zhang和G. Katz。 通过证明生产的神经网络验证。 2022计算机辅助设计(FMCAD)中的形式方法,第38-48页,2022年。 K. D. Julian,J。Lopez,J。S. Brush,M。P. Owen和M. J. Kochenderfer。 飞机避免碰撞系统的政策压缩。Hunt,M。Kaufmann,J。S。Moore和A. Slobodova。使用ACL2进行工业硬件和软件验证。皇家学会的哲学交易A:数学,物理和工程科学,375(2104):20150399,2017年9月。O. Isac,C。W。Barrett,M。Zhang和G. Katz。通过证明生产的神经网络验证。2022计算机辅助设计(FMCAD)中的形式方法,第38-48页,2022年。K. D. Julian,J。Lopez,J。S. Brush,M。P. Owen和M. J. Kochenderfer。 飞机避免碰撞系统的政策压缩。K. D. Julian,J。Lopez,J。S. Brush,M。P. Owen和M. J. Kochenderfer。飞机避免碰撞系统的政策压缩。2016 IEEE/AIAA 35届数字航空电子系统会议(DASC),第1-10页,2016年9月。K. Kanishev。 imandra界面到机器人OS:第一部分I. https://medium.com/imandra/imandra-intra-intra-intra-intra-intra-intra-intra-intra-os-part-os-part-i-9f388888888888888888c5c3a1。 G. Katz,C。W。Barrett,D。L。Dill,K。Julian和M. J. Kochenderfer。 Reluplex:用于验证深神经网络的有效SMT求解器。 在R. Majumdar和V. Kuncak中,编辑,计算机辅助验证-29届国际会议,2017年,德国海德堡,2017年7月24日至28日,会议记录,第一部分,计算机科学讲义的第10426卷,第97-117页。 Springer,2017年。 G. O. Passmore。 在金融算法的形式方法的工业化中学到的一些经验教训。 在M. Huisman,C.Păsăreanu和N. Zhan中 Springer International Publishing。 ISBN 978-3-030-90870-6。 C. Szegedy,W。Zaremba,I。Sutskever,J。Bruna,D。Erhan,I。J。Goodfellow和R. Fergus。 神经网络的有趣特性。 Corr,2013年12月。K. Kanishev。imandra界面到机器人OS:第一部分I. https://medium.com/imandra/imandra-intra-intra-intra-intra-intra-intra-intra-intra-os-part-os-part-i-9f388888888888888888c5c3a1。G. Katz,C。W。Barrett,D。L。Dill,K。Julian和M. J. Kochenderfer。 Reluplex:用于验证深神经网络的有效SMT求解器。 在R. Majumdar和V. Kuncak中,编辑,计算机辅助验证-29届国际会议,2017年,德国海德堡,2017年7月24日至28日,会议记录,第一部分,计算机科学讲义的第10426卷,第97-117页。 Springer,2017年。 G. O. Passmore。 在金融算法的形式方法的工业化中学到的一些经验教训。 在M. Huisman,C.Păsăreanu和N. Zhan中 Springer International Publishing。 ISBN 978-3-030-90870-6。 C. Szegedy,W。Zaremba,I。Sutskever,J。Bruna,D。Erhan,I。J。Goodfellow和R. Fergus。 神经网络的有趣特性。 Corr,2013年12月。G. Katz,C。W。Barrett,D。L。Dill,K。Julian和M. J. Kochenderfer。Reluplex:用于验证深神经网络的有效SMT求解器。在R. Majumdar和V. Kuncak中,编辑,计算机辅助验证-29届国际会议,2017年,德国海德堡,2017年7月24日至28日,会议记录,第一部分,计算机科学讲义的第10426卷,第97-117页。Springer,2017年。G. O. Passmore。在金融算法的形式方法的工业化中学到的一些经验教训。在M. Huisman,C.Păsăreanu和N. Zhan中Springer International Publishing。ISBN 978-3-030-90870-6。 C. Szegedy,W。Zaremba,I。Sutskever,J。Bruna,D。Erhan,I。J。Goodfellow和R. Fergus。 神经网络的有趣特性。 Corr,2013年12月。ISBN 978-3-030-90870-6。C. Szegedy,W。Zaremba,I。Sutskever,J。Bruna,D。Erhan,I。J。Goodfellow和R. Fergus。神经网络的有趣特性。Corr,2013年12月。
1 简介 机器学习 (ML) 模型广泛应用于许多实际应用的决策过程。现代 ML 方法的快速发展、实际成就和整体成功 [LeCun et al. , 2015; Jordan and Mitchell, 2015; Mnih et al. , 2015; ACM, 2018] 保证了机器学习将作为一种通用计算范式盛行,并将找到越来越多的实际应用,其中许多与我们生活的各个方面有关。不幸的是,ML 模型有时会灾难性地失败 [Zhou and Sun, 2019; CACM Letters to the Editor, 2019]。它们还可能由于模型中的偏见(例如种族、性别、年龄)而支持糟糕的决策 [Angwin et al. , 2016]。由于脆弱性,它们的决策可能会令人困惑 [Szegedy et al. , 2017]。 ,2014;Goodfellow 等人,2015]。因此,迫切需要了解 ML 模型的行为,分析模型(或用于训练模型的数据)的(潜在)故障,对其进行调试并可能进行修复。这引起了人们对验证 ML 模型操作的兴趣日益浓厚 [Ruan 等人,2018;Narodytska,2018;Narodytska 等人,2018b;Katz 等人,2017],同时也激发了旨在设计可解释人工智能(XAI)方法的努力 [Ribeiro 等人,2018;Lundberg 和 Lee,2017;Ignatiev 等人,2018;Narodytska 等人,2018a;Ribeiro 等人, 2016;伊格纳季耶夫等人。 , 2019a;
项目详情:癫痫发作是指大脑有节奏、同步的异常活动,会对健康产生不利影响。多次无诱因癫痫发作是指癫痫,全球约有 5000 万人患有癫痫。癫痫发作是一种复杂的神经过程,需要具有完整中枢神经系统结构的体内模型来进一步了解其机制。我们开发了一种基于成像的方法,使用带有荧光报告基因 (GCaMP) 的转基因斑马鱼幼体,我们能够以无与伦比的时空分辨率可视化整个大脑对药物治疗的功能反应 (Winter, Goodfellow et al., (2021) Br J Pharmacol. 178, 2671-2689)。此外,我们的方法具有巨大的潜力,可以提供有关导致或抑制癫痫发作性大脑活动的分子机制的详细信息。尽管这种方法已经显示出广泛的实用性,但我们相信,通过应用基于人工智能/机器学习 (AI/ML) 的图像分析技术,这种方法的效果可以大大增强。我们相信,应用这些技术将使我们能够在使用促癫痫或抗癫痫药物后更好地识别致癫痫活动,更好地确定起作用的作用机制,并提供有关从神经元局部兴奋到全脑致癫痫网络发展之间的事件序列的全新基础数据。