在第 3 部分中,CuBiI 4 的 JCPDS 卡号应为 81-197,而应改为 081-0197。可以使用此编号在与 PDF 2004 数据库链接的 Crystallographica Search-Match(版本 2、1、1、0)软件中检索 CuBiI 4 的晶体信息。皇家化学学会对这些错误以及由此给作者和读者带来的任何不便深表歉意。
f i g u r e 3的α-替丁氨酸和番茄和菌落形成单元(CFU)的含量取决于伪 - 裂圈系统的距离。α-替代(4 mM)。(a)在距人造根每5 mm的距离内,α-替丁氨酸和番茄的浓度。红色条代表α-替代的含量;紫色条代表番茄的内容。分别使用Tukey的测试分别为tomatine和tomatidine的内容分别表示统计上显着的差异(tomatine; tomatine; a - b)在统计上具有显着差异(p <.05)。(b)CFU在距人造根每5 mm的距离内在土壤中计数。蓝色条代表渗出条件,红色条代表α-替代的条件。使用Tukey的测试,不同的字母(A - C)表示菌落形成单元数的统计学显着差异(P <.05)。错误条表示标准偏差(所有样本,n = 4)。
摘要。这项研究重点是探索强化学习算法双胞胎的鲁棒性,延迟了深层确定性的政策梯度(TD3),尤其是在面对不确定性,噪音和钉子的表现方面。强化学习是一种机器学习范式,在该范式中,代理商学习如何执行任务并通过与环境的互动来优化长期奖励。这种学习方法在自动驾驶,游戏,机器人控制等领域具有广泛的应用。TD3是一种高级强化学习算法,在各种复杂的任务和环境中的性能非常出色。此外,TD3具有一些独特的性能优势,例如双Q批评结构和目标策略平滑,这在面对不确定性和噪音时可能会使其强大。虽然对增强学习的鲁棒性进行了广泛的研究,但相对缺乏专门针对TD3的研究。本研究旨在填补这一空白,并研究当添加不同类型的噪声或受到攻击时TD3的性能如何变化。这项研究的目的不仅旨在更深入地了解TD3算法本身,还旨在为增强学习鲁棒性的理论和实践提供强有力的支持。这项研究具有广泛的应用和学术价值,并有可能在强化学习领域推动进一步的进步。
摘要目的:分析墨西哥韦拉克鲁斯Tezonapa热带山地云森林(TMCF)的海拔梯度中的兰花丰度和多样性。设计/方法论/方法:在100×20 m临时样带中采样兰花,随机分布在海拔梯度中(T1800-900,T2 901-1,000,T31,001-1,100,T4,T41,101-1,200,和T5 1,101-1,200,和T5 1,101-1,300 M)。每个标本都是地理参数,鉴定了物种,并确定了保护状态。结果:该地区的多样性达到了16个属的26种兰花。记录了204个标本的护照数据。研究局限性/含义:T3记录了最大的丰度,丰富性和多样性。此结果符合TMCF中兰花发展所需的有利温度和湿度条件。发现/结论:Stanhopea Tigrina有灭绝的危险。因此,迫切需要以下方案:体外繁殖,个人释放到环境中以及野生种群的随访,以改善遗传改善。
(临床扫描仪中常用的B Max的两倍)。平均扩散率(MD),裂纹各向异性(FA),螺旋角(HA)和次级特征向量角(E2A)计算B = [100,450] S∕MM 2和B = [100,450] S∕MM 2和B = [100,1000] S∕MM 2的M 2和M 3和M 3。结果:M 3的MD值略高于M 2,其中δMD= 0。05±0。05 [×10 - 3 mm 2 s](p = 4 e -5)对于B max = 450 s∕mm 2和δmd= 0。03±0。03 [×10 - 3 mm 2 s](p = 4 e -4)对于B max = 1000 s ∕毫米2。通过将B MAX从450 S∕mm 2(δMD= 0。06±0。04 [×10 - 3 mm 2 s](p = 1。6 e -9)对于m 2和δmd = 0。08±0。05 [×10-3 mm 2 s](p = 1 e -9)对于m 3)。FA,E2A和HA之间的差异在不同方案中并不显着(P>0。05)。结论:这项工作表明体内心脏DWI的B值更高,运动补偿梯度梯度波形比使用相比使用。将运动补偿顺序从m 2增加到m 3,最大b值从450 s ∕ mm 2增加了MD值,但是FA和角度指标(HA和E2A)保持不变。我们的工作为心脏DWI的下一代MR扫描仪铺平了道路,具有高性能梯度系统。
据估计,随着人口老龄化,糖尿病发病率将从19.9%增加到65-79岁的1.112亿人,预计到2030年糖尿病患者将继续增加到5.78亿人,到2045年将增加到7亿人。机器学习是人工智能的一种,旨在理解或识别数据结构并将数据转换为模型。机器学习在健康领域的应用正在迅速增长,越来越多的健康研究人员在研究中使用机器学习算法。一些机器学习算法可以用来做预测,其中之一就是预测糖尿病的分类算法。根据所用几种算法的比较结果,朴素贝叶斯和梯度提升分类算法具有其他算法的最佳值。梯度提升算法在线性样本上取得了较高的效果,准确率为77.09%,f值达到83.39%。朴素贝叶斯对随机样本测试的结果最优,准确率为 76.57%,f 度量值为 82.82%。分层样本测试结果中准确率最高的是梯度提升算法,准确率为77.34%,f值达到83.39%。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月8日。 https://doi.org/10.1101/2025.02.08.637226 doi:biorxiv preprint
抽象有机物在土壤中的积累被理解为矿物相关(分解,微生物衍生的)有机物与自由颗粒(较少分解的植物衍生)有机物之间的动态。然而,从区域到全球尺度,主要土壤有机碳(SOC)部分的模式和驱动因素尚不清楚,并且与土壤类型之间的子宫遗传学变异保持不佳。在这里,我们将与淤泥和粘土大小的颗粒(S + C),稳定的聚集体(>63μm,SA)和颗粒有机物(POM)相关的SOC与沿着地理气候梯度采样的各种草地表土与颗粒有机物(POM)分开。两种矿物相关的部分(S + C&SA)对SOC的相对贡献在整个梯度中差异很大,而POM从来都不是主要的SOC分数。稳定的骨料(>63μm)在富含碳 - 富含碳的土壤中成为主要的SOC分数。稳定聚集体中碳的分解程度(>63μm)始终在S + C和POM级分之间,并且没有沿研究梯度变化。相比之下,与S + C分数相关的碳在富含碳 - 贫民土壤中的微生物分解较少。S + C部分中SOC的量与Pedogenic氧化物的含量和质地呈正相关,而与稳定聚集体(>63μM)相关的SOC量与Pedogenic氧化物含量呈正相关,并与温度负相关。我们提出了我们发现的概念摘要,该概念将稳定骨料(>63μm)与其他主要SOC馏分的作用整合在一起,并说明了它们在(土壤)环境梯度之间的重要性变化。
在人类连接组计划的带动下,具有超高梯度强度的扫描仪的开发显著提高了体内扩散 MRI 采集的空间、角度和扩散分辨率。可以利用改进的数据质量来更准确地推断微观结构和宏观结构解剖结构。然而,这种高质量的数据只能在全世界少数几台 Connectom MRI 扫描仪上采集,而且由于硬件和扫描时间的限制,在临床环境中仍然无法使用。在本研究中,我们首先更新了基于纤维束成像的手动注释主要白质通路的经典协议,以使其适应当今最先进的扩散 MRI 数据所能产生的更大体积和更大变化的流线。然后,我们使用这些协议手动注释来自 Connectom 扫描仪的数据中的 42 条主要通路。最后,我们表明,当我们使用这些手动注释的通路作为具有解剖邻域先验的全局概率纤维束成像的训练数据时,我们可以在质量低得多、更广泛可用的弥散 MRI 数据中对相同的通路进行高精度、自动重建。这项工作的成果包括来自 Connectom 数据的 WM 通路的全新综合图谱,以及我们的纤维束成像工具箱的更新版本,即受基础解剖学约束的 TRActs (TRACULA),该工具箱使用该图谱中的数据进行训练。图谱和 TRACULA 均作为 FreeSurfer 的一部分公开分发。我们首次全面比较了 TRACULA 与更传统的多感兴趣区域自动纤维束成像方法,并首次演示了在高质量 Connectom 数据上训练 TRACULA 以造福使用更温和的采集协议的研究。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权所有此版本发布于2023年6月20日。 https://doi.org/10.1101/2023.06.20.545705 doi:biorxiv Preprint