获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
具有节点属性的大规模图在各种现实世界应用中越来越普遍。创建镜像现实世界示例的合成,富含属性的图至关重要,尤其是在限制始终数据时共享分析和开发学习模型的图形数据。传统的图生成方法的处理能力有限,无法处理这些复杂的结构。扩散模型的最新进展显示出在没有属性和较小分子图的生成图形结构方面的潜力。但是,由于复杂的属性结构相关性和这些图的大尺寸,这些模型在生成大型属性图时面临挑战。本文介绍了一种新颖的扩散模型,GraphMaker,专为生成大型归因图而设计。我们探索了节点属性和图形结构生成过程的各种组合,发现异步方法更有效地捕获了复杂的属性结构相关性。我们还通过边缘迷你批次生成解决可扩展性问题。为了证明我们在图形数据传播中的实用性,我们引入了新的评估管道。评估表明,GraphMaker生成的合成图可用于为在原始图上定义的任务开发竞争图形学习模型,而无需实际访问这些图形,而许多领先的图形生成方法在此评估中缺乏。我们的实施可在https://github.com/graph-com/graphmaker上获得。