摘要 - 生成长距离量子纠缠是支持量子通信和计算应用的量子网络的最重要功能之一。概率纠缠过程中成功的纠缠率随着距离而大大降低,而交换是一种解决此问题的广泛应用的量子技术。大多数现有的纠缠路由协议使用基于钟状状态测量的经典纠缠交换方法,只能融合两个成功的纠缠链接。本文呼吁一种更一般且有效的交换方法,即基于Greenberger-Horne-Zeilinger的N-融合,可以融合成功的纠缠链接,以最大程度地利用量子网络的多个量子 - 用户对的纠缠率。我们提出了利用N-融合的属性的效率纠缠路由算法,用于具有一般拓扑的量子网络。评估结果表明,与现有的算法相比,我们在N融合下提出的算法可以大大改善网络性能。索引项 - Quantum网络;纠缠路线; n-融合纠缠交换; Greenberger-Horne-Zeilinger(GHz)测量
全国自杀预防热线提供 150 多种语言的帮助。请致电 1-800-273-8255 或发送短信 HELLO 至 741741。西班牙语,品牌 1-888-628-9454。如果您是聋人或听力障碍者,请致电 1-800-799-4889。费城自杀与危机中心提供有关抑郁、自残、绝望、愤怒、成瘾和关系问题的指导和评估,电话是 215-686-4420。退伍军人危机聊天电话是 1-800-273-8255,短信是 838255。特雷弗项目为 25 岁及以下的 LGBTQ+ 青年提供危机支持。请致电 1-866-488-7386,发送短信 START 至 678678,或开始聊天。
N 量子比特系统的多体纠缠态。我们在本文中提出的实验方案基于一个新的可精确解的时间相关 N 量子比特模型。[33] 参考文献 [33] 具有更多的推测性,它的范围集中在一个时间相关的多体自旋模型的呈现上,该模型主要侧重于 N 量子比特之间设计的 N 向耦合的特性。在本文中,我们使用一个时间相关的模型,该模型经过量身定制,可以牢牢锚定在最适用于量子信息和计算的两个最突出的物理系统上:囚禁离子和超导量子比特。事实上,该模型的设计首先考虑了所有完善的协议,用于有效地再现涉及系统所有量子位的 N 体相互作用( N 向相互作用),无论是在囚禁离子 [34,35] 还是超导量子位系统 [36] 中;其次,能够在超导量子位的情况下仅执行单量子位操作 [36],并在囚禁离子的情况下通过扫描隧道显微镜 (STM) 技术,原则上随意将有效的时间相关场施加到一个量子位上。[37–39]
这正是Zhu等人的结果。有参考。[20]。他们提出了一种设置来增加GHz状态的大小,而不增加实验设置中的光学元素数量。光子纠缠在极化中,但没有在空间路径中区分它们[21,22],而是通过频率区分。该提案中的关键要素是微环共振器(MRR),它允许具有100秒尖锐线的频率梳理,并在大量的频率箱之间建立相关性[19,23,24]。在这项令人印象深刻的新技术中,由于在微型环谐振器内部自发的四波混合过程中保存能量,因此创建了围绕泵激光光谱模式的完全相关的光子对,如图1(b)。
许多量子态制备方法依赖于耗散量子态初始化和随后的幺正演化到所需目标状态的组合。在这里,我们展示了量子测量作为量子态制备的附加工具的实用性。从纯可分离多部分状态开始,控制序列(包括旋转、通过单轴扭曲的自旋压缩、量子测量和后选择)生成高度纠缠的多部分状态,我们将其称为投影压缩 (PS) 状态。然后,通过优化方法,我们确定了最大化 PS 状态与最大纠缠 Greenberger-Horne-Zeilinger (GHZ) 状态重叠保真度所需的参数。与仅通过单轴扭曲的幺正演化进行准备相比,该方法可显著减少 GHZ 状态的状态准备时间,从而成功实现后选择结果。