b'we考虑了与随机噪声(LPN)问题的经典学习奇偶的稀疏变体。我们的主要贡献是一种新的算法框架,它为学习稀疏平等(LSPN)问题和稀疏LPN问题提供了针对低噪声的学习算法。与以前的LSPN和稀疏LPN的方法不同(Grigorescu等人,2011年;英勇,2015年; Karppa等。,2018年; Raghavendra等。,2017年; Guruswami等。,2022),该框架具有一个简单的结构,而无需快速矩阵乘法或张量方法,因此其算法易于实现并在多项式空间中运行。令n为尺寸,k表示稀疏性,\ xce \ xb7是噪声率,使每个标签都会被概率\ xce \ xb7串起。是计算学习理论中的基本问题(Feldman等人。,2009年),学习与噪声的稀疏平等(LSPN)假定隐藏的平等是K -Sparse,而不是潜在的密集载体。虽然简单的枚举算法采用n k = o(n/k)k时间,但以前已知的结果静止图至少需要n k/2 = \ xe2 \ x84 \ xa6(n/k)k/2 k/2对于任何噪声率\ xce \ xb7(Grigorescu等人(Grigorescu等)),2011年;英勇,2015年; Karppa等。,2018年)。我们的框架提供了LSPN算法在时间O(\ XCE \ XB7 \ XC2 \ XC2 \ XB7 N/K)K中,对于任何噪声率\ XCE \ XB7
ghosh – Verbauwhede论文涉及Cryptosys-Tem [47,算法3]的恒定时间硬件实现,以及对基于代码的加密术的Overbeck-Sendrier调查[69,第139-140页]。所有这些来源(以及更多)都描述了Patterson [72,V节]引入的算法,以纠正由无方面的多项式定义的二进制GOPPA代码的T错误。McEliece的纸介绍了Mceliece Cryptosystem [63]也指出了Patterson的算法。但是,帕特森的算法不是最简单的快速二进制二进制解码器。这里的一个问题是,简单性与纠正的错误数量之间存在折衷(这反过来影响了所需的mceliece密钥大小),如以下变体所示:帕特森的论文包含了更简单的算法以纠正⌊t/ 2⌋错误;从苏丹[84]开始,然后是Guruswami – Sudan [50],更复杂的“列表解码”算法,校正略多于T错误。,但让我们专注于快速算法,以纠正传统上使用McEliece Cryptosystem中使用的T错误。主要问题是,在这些算法中,Patterson的算法并不是最简单的。GOPPA已经在GOPPA代码的第一篇论文中指出了[48,第4节],二进制GOPPA代码由平方英尺定义的多项式G也由G 2定义。校正由G 2定义的代码中T错误的问题立即减少到用T错误(即Reed – Solomon解码)的多项式插值问题。生成的二进制二进制解码器比Patterson的解码器更简单。简单性的好处超出了主题的一般可访问性:简单算法的软件倾向于更易于优化,更容易防止定时攻击,并且更易于测试。在伯恩斯坦– Chou-Schwabe [16],Chou [34]和Chen – Chou [32]的最先进的McEliece软件中使用了相同的简单结构并不是一个巧合。该软件消除了与数据有关的时机,同时包括子例程中的许多加速度。避免帕特森的算法也可能有助于正式验证软件正确性,这是当今量词后加密术的主要挑战。也许有一天为Patterson的算法软件赶上了这些其他功能,也许它会带来进一步的加速,或者可能不会。Patterson的算法用于某些计算,使用度t而不是度量2 t,但还包括额外的计算,例如反转模量G;文献尚未明确速度是否大于放缓。,即使帕特森的算法最终更快,肯定会有一些应用程序更重要。只有Patterson的算法才想到Knuth的名言[55,第268页],即“过早优化是所有邪恶的根源”。对于熟悉编码理论的受众来说,“ G 2的GOPPA代码与G 2的GOPPA代码相同;对于更广泛的受众来说,可以通过说“以下关于编码理论的课程”来减少上一句话。,但对于观众来说,将重点放在这种解码器上的小道路上是更有效的,而且文学中似乎没有任何如此的小型言语。总而言之,本文是对由无方面的多项式定义的二进制GOPPA代码的简单t eRROR解码器的一般性介绍,并通过证明了t -reed reed – solomon解码器的证明。