重夸克是研究超相对论重离子碰撞中产生的夸克胶子等离子体 (QGP) 特性的有效探针。本文将讨论 ALICE 合作组测量的 pp 和 Pb-Pb 碰撞中开放重味产生的最新结果。测量 Pb-Pb 碰撞中开放重味产生可以测试重夸克在介质中的传输和能量损失机制。此外,测量重味粒子的椭圆 (𝑣 2 ) 和三角形 (𝑣 3 ) 流动系数可以深入了解重夸克参与介质的集体运动、它们在介质中能量损失的路径长度依赖性以及强子化过程中的复合效应。最后,开放重味粒子的定向流 (𝑣 1) 对碰撞早期存在的空前强磁场非常敏感,因此测量其电荷依赖性是限制 QGP 电导率的关键。在像 pp 这样的小型强子系统中,开放重味粒子的产生为研究重离子碰撞中的热介质效应以及测试微扰量子色动力学计算提供了基础。
量子计算可能会提供机会,以随着物理时间的进化来模拟强烈相互作用的场理论,例如量子染色体动力学。这将使访问Minkowski-Signature的相关器,与目前进行的欧几里得计算相反。但是,与当今的计算一样,量子计算策略仍然需要限制有限的系统大小,包括有限的,通常是周期性的空间量。在这项工作中,我们研究了这在提取腺形和类似康普顿的散射幅度时的后果。使用Briceño等人中提出的框架。[物理。修订版d 101,014509(2020)],我们估计各种1 d Minkowski签名量的体积效应,并表明这些量可能是系统不确定性的重要来源,即使对于当今欧几里得计算标准的体积也很大。然后,我们提出了一种改进策略,基于有限体积的对称性减少。这意味着产生相同洛伦兹不变的运动点在周期系统中仍可能在物理上不同。我们所证明的是,在数值和分析上,在此类集合上平均都可以显着抑制不需要的体积变形并改善物理散射幅度的提取。由于改进策略仅基于运动学,因此可以在不详细了解系统的情况下应用它。
量子色动力学 (QCD) 在从核力将原子核结合在一起到非弹性强子碰撞以及极端条件下物质的行为(如超新星和早期宇宙)等一系列现象中发挥着重要作用。自 20 世纪 70 年代发现以来,已经开发出许多分析和数值工具来研究 QCD。最成功的数值计算方法之一是格点 QCD [1,2]。已经使用格点 QCD 对强子谱 [3 – 5];电弱矩阵元 [6 – 14];高温低密度系统和一些多强子系统 [15 – 18] 的性质进行了高精度计算(最近的综述见参考文献 [19,20])。然而,一些重要可观测量的格点 QCD 计算受到所用随机采样中存在的符号问题的限制。例如,模拟高密度的 QCD [21-25]、与超新星和早期宇宙相关的 QCD,或者带有 θ 项的 QCD,存在符号问题 [26],超出了经典计算机的大规模能力范围。20 世纪 80 年代,费曼 [27] 和贝尼奥夫 [28] 认识到了经典计算机模拟量子物理的局限性,他们提出使用受控量子系统来模拟感兴趣的量子系统。最近,实验室中对量子系统的控制迅速改进,导致了最初几代量子计算机的诞生。人们已经探索了许多不同的平台,包括但不限于:
研究核物质到夸克胶子等离子体(QGP)的相变是相对论能量下重离子碰撞的主要目的[1–3]。根据格点 QCD 计算,相变是在有限温度和较小重子化学势下的一个平滑转变[4–6]。在较大的化学势下,它转变为一级相变,一级相边界的端点称为临界点[7–10]。为理解 QCD 的相结构,了解临界点和相边界在 QCD 相图中的位置非常重要。然而,从强子物质到夸克物质的转变密度的确切值在核物理和天体物理中仍然是一个长期争论的问题[11–17]。相对论能级重离子碰撞是目前研究QCD相变的唯一实用方法。实验测量和输运模型计算均表明,在交替梯度同步加速器(AGS)能量下,重离子碰撞可以形成密度大于3ρ0、温度高于50MeV的高温致密物质[18–20]。在这一能量领域,人们进行了大量的理论计算和实验测量,致力于寻找相变的迹象[21–33]。遗憾的是,到目前为止,临界点和相变边界仍未有定论。
摘要候选PEVATRON MGRO J1908 + 06,显示了超过100 tev的硬光谱,是银河平面中最特殊的射线源之一。其复杂的形态和一些可能与非常高的能量(VHE)发射区域相关的可能对应物,无法区分-Ray发射的辐射性和缓慢性。在本文中,我们说明了MGRO J1908 + 06的新的多波长分析,目的是阐明其性质及其超高能量发射的起源。我们对12个CO和13 CO分子线发射进行了分析,证明存在与源区域空间相关的密集分子云的存在。我们还分析了10 GEV和1 tev nding具有硬光谱的对应物之间的12年fermi -large区域望远镜(LAT)数据(1.6)。我们对XMM – Newton数据的重新分析使我们能够对此来源对X射线UX进行更严格的约束。我们证明,一个加速器无法解释整个多波长度数据集,无论它是加速质子还是电子,但是需要一个两区模型来解释MGRO J1908 + 06。VHE发射似乎很可能是由PSR J1907 + 0602在南部地区提供的TEV脉冲星风星云,以及北部地区的Supernova Remnant G40.5 0.5与分子云之间的相互作用。
过去几十年来深度学习技术的发展和改进为高能物理学的算法方法创造了新的机会。尤其是,深度学习导致了算法识别算法的性能的显着进步,当在孔子大型强子撞机(例如cern the Cern the Colling collider)中产生时,由夸克或gluon碎片形成的结构。在本博士学位论文中,我们着重于深度学习方法,以增强CMS实验中喷气风味识别算法的性能。我们旨在通过改善模型鲁棒性来扩展其功能,以应对可能应用于算法使用的变量的变化。此外,通过扩展其最初的任务,我们为将来的研究带来了新的机会。首先,我们在创建保持喷气机结构的深神经网络的背景下探索变压器体系结构。我们建立了两个模型,其性能和计算成本为现场设定了新的最新技术。第二,我们基于对抗性攻击引入了一种数据不足的训练方法,从而提高了模型的稳健性,以防止输入变量的分布变化。增强鲁棒性对于改善校准后的模型性能是必要的。最后,我们成功地扩展了算法的任务以识别Hadronic Taus并估计喷气能量校正和分辨率。此外,我们介绍了奇怪喷气机的识别,这是LHC实验的第一个。最终,这项博士学位的工作导致创建了一类新的模型,具有改进的建筑,培训方法以及人工神经网络可能实现的范围的扩大范围。最终的模型(称为Upart)是LHC的CMS实验的JET识别的最新模型。通过源自奇怪夸克的喷气机的识别是LHC的第一个,一旦校准了新模型,就可以追求针对包含这种类型喷气的最终状态的新分析。
B-梅森轻锥分布振幅(LCDA)是特性的基本数量 - 根据其组成夸克和胶子来构成b -mesons的内部结构。最初引入以捕获通用独家b -depay的本质,此后这些分布幅度自此在分解定理的发展中发挥了关键作用[1-8]。在众多硬性反应的领域中,分解定理突出了LCDA的内部矩(IM)的重要性,特别是在领先的贡献中。值得注意的是,IM具有至关重要的假名相关性,控制着诸如Leptonic衰变(B→γℓν)等多种过程中的领先功率表格相互作用[9],半衰弱的衰减(B→πℓν)[10]和Hadronic Decays(B→ππ)[11] [11] [11] [11]。此外,IM在构建LCDA模型中起着至关重要的作用[12-14]。当B -Meson衰减的分析超出树的水平时,对数力矩(LMS)变得必不可少,尤其是在诸如B→γℓν等精确研究中,在这些研究中,它们在其中主导了理论错误[15]。这强调了IM和LMS在促进我们对B -Meson衰减的理解中所发挥的关键作用,并强调它们在理论建模和精确计算中的重要性。尽管IMS和LMS的重要性至关重要,但我们对它们的理解仍然有限。这主要是由于它们对非扰动动力学的信息进行编码,从而使其计算从QCD的第一个原理中挑战。IM和LMS上的现有结果在很大程度上取决于模型,缺乏令人满意的约束。这种限制阻碍了B物理学中相关研究中的口音预测的精度。因此,显然必须以模型独立的方式确定这些时刻的确定,从而解决我们知识中的关键差距并推进B物理学领域。诸如晶格QCD之类的非扰动甲基甲基苯甲酸酯是
量子色动力学 (QCD) 相图的探索在很大程度上依赖于在不同束流能量下进行的重离子碰撞实验 [ 1 , 2 ]。这些碰撞跨越不同阶段,演变过程错综复杂,需要一个多阶段的理论框架。该框架已成功描述了大量测量结果。最终强子的集体流为我们了解早期动力学、传输特性和所产生的致密核物质的状态方程 (EoS) 提供了至关重要的见解 [ 3 ]。定向流 (v 1 ) 表示集体侧向运动,对早期演化和状态方程尤其敏感 [ 3 , 4 ]。dv 1 / dy | y = 0 的非单调行为(v 1 ( y ) 在中快速度附近的斜率)已被提出作为强子物质和夸克胶子等离子体 (QGP) 之间一级相变的指示 [ 3 , 5 , 6 ]。这是因为相变引起的 EoS 软化可能导致膨胀过程中定向流的减少,从而导致 dv 1 / dy | y = 0 与束流能量的关系达到最小值 [3]。然而,强调 v 1 ( y ) 对各种动力学方面的敏感性至关重要。人们已经利用各种模型来计算从 AGS 到最高 RHIC 能量的 v 1 ( y ),结果差异很大,但没有一个能有效地描述跨束流能量测量的主要特征 [7,8]。在本文中,我们使用具有参数初始条件的 (3 + 1) 维混合框架解释了介子和重子的 v 1 ( y ),并揭示了它对有限化学势下重子初始停止和致密核物质 EoS 的约束能力 [9]。
顶夸克代表着独特的高能系统,因为它们的自旋关联可以被测量,从而允许用高能对撞机中的量子比特来研究量子力学的基本方面。这里,我们给出了通过高能对撞机中的量子色动力学 (QCD) 产生的顶-反顶 (t¯t) 夸克对的量子态的一般框架。我们认为,一般来说,在对撞机中可以探测的总量子态是由产生自旋密度矩阵给出的,这必然会产生混合态。我们计算了由最基本的 QCD 过程产生的 at¯t 对的量子态,发现在相空间的不同区域存在纠缠和 CHSH 破坏。我们表明,任何现实的 at¯t 对的强子产生都是这些基本 QCD 过程的统计混合。我们重点关注在 LHC 和 Tevatron 上进行的质子-质子和质子-反质子碰撞的实验相关案例,分析量子态与碰撞能量的依赖关系。我们为纠缠和 CHSH 破坏特征提供实验可观测量。在 LHC 上,这些特征由单个可观测量的测量给出,在纠缠的情况下,这代表违反柯西-施瓦茨不等式。我们将文献中提出的 t¯t 对的量子断层扫描协议的有效性扩展到更一般的量子态和任何产生机制。最后,我们论证了在对撞机中测量的 CHSH 破坏只是一种弱形式
探索量子染色体动力学(QCD)相图在很大程度上依赖于在各种束能进行的重离子碰撞实验[1,2]。这些碰撞的复杂演化,跨越各个阶段,需要一个多阶段的理论框架。成功描述了许多测量值。对早期动力学,运输特性以及创建密集的核物质的状态(EOS)方程的最终最终HADRON的集体流量[3]。定向流(V 1),表示集体侧向运动,对早期演变和EOS特别敏感[3,4]。D V 1 / D Y |的非单调行为y = 0(已提出了范围内斑点的V 1(y)的斜率)表示辐射物质和夸克 - 杜伦等离子体(QGP)之间的一阶相变[3,5,6]。这是因为归因于相变的EOS的软化会导致膨胀过程中有向流的减少,因此导致D V 1 / D Y |最小值。 y = 0作为梁能量的函数[3]。但是,要强调V 1(y)对各种动态方面的敏感性至关重要。各种模型已被用于计算从AG到顶部RHIC能量的V 1(Y),从而产生了巨大变化的结果,但是,没有一个e ff offf eff offf of eff of e ff the efff of e ff the efff of eff of eff of eff of eff of the e ff [7,8]。在这项贡献中,我们使用(3 + 1) - 尺寸的混合框架与参数初始条件解释了V 1(y),并揭示其在有限化学电位上的浓密核物质的限制功率[9]。