确定药物,微生物和疾病之间的潜在关联对于探索发病机理和改善精确医学具有重要意义。有很多用于成对关联预测的计算方法,例如药物微生物和微生物 - 疾病酶关联,但很少有方法集中在高阶三质量药物 - 微生物 - 疾病(DMD)关联上。由HyperGraph神经网络(HGNN)的进步驱动,我们希望它们能够完全限制高级相互作用模式,这是由DMD关联和重新确定声音预测性能提出的Hy-Pergraph背后的。但是,由于体外筛查的高成本,已确认的DMD关联不足,该筛选形成了稀疏的DMD超图,因此具有次级通用能力。为了减轻限制,我们提出了一个dmd关联预测,提出了一个名为MCHNN的经验化学习。我们在DMD HyperGraph上设计了一种新颖的多视图对比学习(CL)作为辅助任务,该任务指导HGNN学习更多的判别性代表并增强通用能力。extentiment实验表明,MCHNN在DMD关联预先字典中实现了令人满意的性能,更重要的是,在稀疏的DMD Hypergraph上设计了我们设计的多视图CL的效率。
将生物原理整合到人工嗅觉系统中,导致了气味检测和分类的显着前进。受到自然嗅觉的复杂机制的启发,研究人员正在开发模仿生物嗅觉途径功能的复杂系统。这些系统利用高密度化学主义传感器阵列(HCSA)结合了先进的计算技术,例如FPGA加速的肾小球收敛CUITS(FGCC)和层次图形图形神经网络(HGNN)。这种生物启发的方法可以实现对挥发性有机化合物(VOC)(VOC)的实时自适应反应,从而提高了气味识别的准确性和效率。是多参数sigmoidal传感器激活(MPSA),它通过利用传感器ARS的多种响应来量化VOC。通过模仿生物系统中发现的神经相互作用,通过可编程突触横梁(LIPSC)实施了横向抑制作用。添加 - 时间自组织图(TSOM)促进气味模式的动态聚类,从而使人们对复杂的气味环境有细微的理解。这项研究的一个新方面在于气味填充物的Grassmannian歧管嵌入(GME),该杂物提供了一个数学框架,用于代表和分析气味的多维性质。再加上哈密顿蒙特卡洛优化的反馈(HMC-FB),该系统有效地补偿了传感器读数的漂移,从而确保了随着时间的推移一致的性能。通过弥合生物学灵感与技术创新之间的差距,这些人工嗅觉系统有望彻底改变从环境监测到食品安全和医疗保健的应用。