图像引导的高强度集中超声(HIFU)已越来越多地用于医学中,并且有几种为此的系统已成为商业上可用的。hifu已在全球范围内批准各种实体瘤,神经系统疾病的治疗以及骨转移的姑息治疗。聚焦超声的机械和热效应为组织疗法,支持性放射治疗,和靶向drugdelivery提供了一种可能性。intergentrationFormatigationFormatigationFormantigantInticalInitySintohifusystemSallowsSallowsSallowsSallowsSallowsForPrecisetemperaturementing and Cocigain for Precate ectrate and to anderation sallowsementing和准确的治疗计划,增加了治疗的安全性和效率。临床上的临床和临床结果表明,图像引导的HIFU的潜力减少了不良反应并术后提高生活质量。介入的核形象 - 指导HIFU是未来有吸引力的非侵入性选择。
高强度聚焦超声 (HIFU) 领域测量标准的要求 Adam Shaw 和 Gail ter Haar * 生活质量部,NPL * 癌症研究所 摘要 本报告讨论了国际电工委员会框架内与高强度聚焦超声 (HIFU) 领域相关的测量标准要求。已审查了与表征这些类型的超声波场的方法相关的现有科学文献,并报告和分析了发送给国际治疗超声学会 (ISTU) 成员和其他选定人员的问卷答复。确定了一些被认为对 HIFU 的发展很重要的主题,现有知识似乎足以在大约两年内产生第一份委员会草案。它们是:设备安全和基本性能;超声功率的测量;场参数的规范;热剂量的定义;以及换能器的电气特性。很可能在一份文件中解决其中几个主题。确定了第二组主题,它们也很重要,但缺乏足够的知识或共识来如此迅速地开始标准化。对于这些主题,更有可能在 5 年内完成:一种可靠的压力测量方法;温度测量;HIFU 场与靶向系统的配准测试;以及用于 QA/工程评估的组织模拟材料。
免疫检查点抑制剂(ICI)旨在通过中断抑制性信号通路并促进免疫介导的恶性细胞的消除来振兴抗肿瘤免疫反应。尽管ICI治疗改变了癌症治疗的景观,但只有一部分患者获得了完全反应。聚焦超声(FUS)是一种非侵入性的,非离子的,深层穿透性局灶性疗法,具有改善ICIS在实体瘤中的效率的巨大潜力。已经与ICIS合并了五种FUS模式,以探索其在临床前研究中的抗肿瘤作用,即高强度集中超声(HIFU)热消融,HIFU高温,HIFU机械消融,超声处理超声波化的微型破坏(UTMD)和SondrodyNamnamnalnamnalnamnalnannalnanS塞治疗(SD)。通过这些FUS模式增强抗肿瘤免疫反应,这表明了FUS作为改善ICI治疗的转化癌症治疗方式的巨大希望。在这里,本评论总结了FUS模式与ICIS结合的这些新兴应用。它讨论了每种FUS模态,每个组合策略的实验方案,诱导的免疫作用和治疗结果。
恶性脑肿瘤是儿童癌症相关死亡的主要原因,并且仍然是所有人口群体发病和死亡的重要原因。中枢神经系统 (CNS) 肿瘤的传统治疗方法是手术切除和放疗,以及辅助化疗。然而,由于血脑屏障 (BBB),化疗药物的治疗效果有限。磁共振引导聚焦超声 (MRgFUS) 是一种新的、有前途的 CNS 肿瘤干预方法,已在临床前试验中取得成功。高强度聚焦超声 (HIFU) 能够以热消融和机械破坏肿瘤的形式作为直接治疗剂。低强度聚焦超声 (LIFU) 已被证明可以破坏 BBB 并增强大脑和 CNS 对治疗剂的吸收。作者对 MRgFUS 在 CNS 肿瘤治疗中的应用进行了综述。该治疗方法在临床前试验中已显示出良好的效果,包括副作用最小、治疗药物向中枢神经系统的渗透增加、肿瘤进展减慢、生存率提高。
癌症转移是与晚期实体瘤相关的90%以上的死亡原因[1,2]。肝脏具有丰富的血液动力学特征(门户静脉和动脉系统)和独特的微环境,使其本质上容易受到传播肿瘤细胞的敏感,从而导致11.1%的转移速率为11.1%,是跨质量的最常见靶标之一[3,4]。近年来,原发性恶性肿瘤和肝转移(LM)的发生率有所增加[5]。大约40%的恶性肿瘤患者发育LM [6],这极大地影响了患者的生存[4]。治疗涉及两个方面:原发性肿瘤和LM [7,8]。如果不能通过手术从根本上切除它们,那么从长远来看,即使有各种当前治疗方案,也很难控制晚期癌症的进展[9]。因此,需要对肝转移患者,尤其是多种治疗后的患者进行积极探索有效且毒性较小的组合疗法。免疫疗法的出现在临床实践中取得了巨大的成功,并且从成为一种流行的新疗法转变为许多癌症指南的一线建议[10-14]。迄今为止,美国FDA批准了各种免疫治疗剂,其中最广泛使用的剂是抗PD1-PDL1 [11,15-18]。由于其有利的毒性,临床益处和患者的生活质量,它们通常用于治疗常见恶性肿瘤[19,20]。然而,晚期癌症患者中肝转移的存在将导致对免疫疗法的反应,这是一种免疫抑制作用,在几项研究中已通过调节和激活全身和肿瘤内免疫细胞来证明[21]。此外,巨噬细胞诱导的凋亡消除了肿瘤特异性的CD8+ T细胞,从而促进肝免疫胆脂[22]。因此,尽管一些研究表明,基于ICI的免疫疗法可改善晚期癌症患者的总体生存,但肝转移患者的总体益处较小[23]。因此,有必要通过逆转免疫抑制性肿瘤微环境来将免疫疗法与其他疗法结合起来,以实现协同作用[24-27]。基于ICI的免疫疗法与细胞毒性化学疗法结合使用已被广泛用作标准临床治疗[28]。临床试验数据(Impower150)表明,化学疗法可以在某种程度上提高ICIS在LM患者中的功效[29]。放射疗法在转移性癌症中的局部作用可以刺激全身免疫,而放射疗法与免疫疗法结合在临床实践中更为常见[30]。例如,放疗增强了免疫疗法的全身作用,导致远处转移性癌症的消退[31]。最小消除疗法还显示了LM患者的免疫调节作用[32 - 36],通过暴露与肿瘤相关的抗原暴露了抗肿瘤免疫反应的全身免疫细胞[37]。高强度集中的超声消融最初用于妇科良性肿瘤,例如子宫肌瘤,现在广泛用于治疗晚期和转移性恶性肿瘤,因为它是一种安全的,非交互的治疗[38,39]。hifu可以准确治疗靶向病变并产生热作用(t-hifu),从而诱导肿瘤或机械作用(M-HIFU)的凝血坏死,从而破坏肿瘤并增强
缩写:3D,三维;ABA,氨基苯硼酸;ACC,氨基羧甲基壳聚糖;ACNC,乙酰化纤维素纳米晶体;AF,纤维环;AF127,醛封端的普卢兰尼克 F127;AG-NH2,琼脂糖-乙二胺共轭物;Ag-CA,羧基化琼脂糖;AHA,醛基透明质酸;AHAMA,甲基丙烯酸酯化醛基透明质酸;AHES,醛基羟乙基淀粉;ALG,海藻酸钠;AMP,抗菌肽;APC,抗原呈递细胞;ASF,乙酰化大豆粉;AT,苯胺四聚体;ATAC,2-(丙烯酰氧基)乙基三甲基氯化铵;ATRP,原子转移自由基聚合;Azo,偶氮苯;家蚕,Bombyx mori;BA,硼酸;BCNF,氧化细菌纤维素纳米纤维;Bio-IL,生物离子液体;BMP-2,骨形态发生蛋白 2;BSA,牛血清白蛋白;BTB,硼砂-溴百里酚蓝;Ca-FA,CaCl 2 -甲酸;CA,氰基丙烯酸酯;Cat,含儿茶酚的多巴胺-异硫氰酸酯;Cat-ELPs,儿茶酚功能化的 ELR;CBM,纤维素结合模块;CD,环糊精;CD-HA,β-CD 修饰的透明质酸;CDH,碳酰肼;cGAMP,环状鸟苷单磷酸-腺苷单磷酸;CH,胆固醇半琥珀酸酯;CHI-C,儿茶酚共轭壳聚糖; CL/WS2,二硫化钨-儿茶酚纳米酶;CMs,心肌细胞;CMCS,羧甲基壳聚糖;CNC,纤维素纳米晶体;CNF,纤维素纳米纤维;CNT,碳纳米管;COL,胶原蛋白;CPEs,化学渗透促进剂;CS,硫酸软骨素;CsgA,Curli 特异性纤维亚基 A;CS-NAC,壳聚糖-N-乙酰半胱氨酸;CSF,脑脊液;CTD,C 端结构域;CtNWs,几丁质纳米晶须;D-MA,甲基丙烯酸酯化羟基树枝状聚合物;DAHA,二醛-透明质酸;DCs,树突状细胞;DDA,葡聚糖二醛;dECM,脱细胞 ECM; DEXP,地塞米松磷酸二钠;Dex,葡聚糖;DF-PEG,双醛功能化聚乙二醇;DNNA,双网络神经粘合剂;DOPA,L-3,4-二羟基苯丙氨酸;DOX,阿霉素;DPN,脱细胞周围神经基质;DST,双面胶带;E-tattoo,电子纹身;E. coli,大肠杆菌;ECG,心电图;ECM,细胞外基质;ePTFE,聚四氟乙烯;ELP,弹性蛋白样多肽;ELRs,弹性蛋白样重组体;EMG,肌电图;EPL,ε-聚赖氨酸;EPS,胞外多糖;ER,内质网;FDA,食品药品监督管理局;FGFs,成纤维细胞生长因子;FibGen,京尼平交联纤维蛋白凝胶; FITC,硫氰酸荧光素;FS-NTF,纳米转移体;呋喃,糠胺;GA,没食子酸;GAG,糖胺聚糖;GC,乙二醇壳聚糖;Gel-CDH,碳酰肼修饰明胶;GelDA,多巴胺修饰明胶;GelMA,明胶-甲基丙烯酰;GI,胃肠道;GRF,明胶-间苯二酚-甲醛;GRFG,明胶-间苯二酚-甲醛-戊二醛;H&E,苏木精和伊红;HA,透明质酸;HA-Ac,透明质酸-丙烯酸酯;HA-ADH,己二酸二酰肼修饰透明质酸;HA-ALD,醛修饰透明质酸;HA-NB,硝基苯衍生物修饰透明质酸;HA-PEG,透明质酸-聚乙二醇;HA-PEI,透明质酸-聚乙烯亚胺;HA-SH,硫醇化透明质酸;HAGM,透明质酸甲基丙烯酸缩水甘油酯;HaMA,甲基丙烯酸酯化透明质酸; HAp,羟基磷灰石;HBC,羟丁基壳聚糖;HES,羟乙基淀粉;HFBI,疏水蛋白;HIFU,高强度聚焦超声;hm-Gltn,疏水改性明胶;HPMC,羟丙基甲基纤维素;HRP,辣根过氧化物酶;Hypo-Exo,缺氧刺激的外泌体;ICG,吲哚菁绿;iCMBAs,基于柠檬酸盐的受贻贝启发的生物粘合剂;IGF,胰岛素样生长因子;iPSC,多能干细胞;IPTG,β-d-1-硫代半乳糖苷;ITZ,伊曲康唑;IVD,椎间盘;JS-Paint,关节表面涂料;KGF,角质形成细胞生长因子;KaMA,甲基丙烯酸酯化κ-角叉菜胶; LAP,苯基-2,4,6-三甲基苯甲酰膦锂盐;LCS,液晶;LCST,低临界溶解温度;LDH,层状双氢氧化物;LDV,亮氨酸-天冬氨酸-缬氨酸;LM,液态金属;m-AHA,单醛透明质酸;MA,甲基丙烯酸酐;MADDS,粘膜粘附药物递送系统;MAP,贻贝粘附蛋白;MATAC,2-(甲基丙烯酰氧基)乙基三甲基氯化铵;mAzo-HA,mAzo 修饰透明质酸;MBGN,介孔生物活性玻璃纳米颗粒;MCS,修饰茧片;MDR,多重耐药;mELP,甲基丙烯酰弹性蛋白样多肽;MeTro,甲基丙烯酰取代的原弹性蛋白;Mfp,贻贝足蛋白; MI,心肌梗死;MMP,基质金属蛋白酶;MN,微针;MPs,单分散微粒;MRSA,耐甲氧西林金黄色葡萄球菌;MSC,间充质干细胞;NB,N-(2-氨基乙基)-4-[4-(羟甲基)-2-甲氧基-5-硝基苯氧基]-丁酰胺;NFC,纳米纤维化纤维素;NGCs,神经引导导管;NHS,N-羟基琥珀酰亚胺;NIR,近红外光;NPs,纳米粒子;NTD,N-端结构域;ODex,氧化葡聚糖;OHA-Dop,多巴胺功能化氧化透明质酸;OHC-SA,醛功能化海藻酸钠;OPN,骨桥蛋白; OSA-DA,多巴胺接枝氧化海藻酸钠;OU,口腔溃疡;p-AHA,光诱导醛透明质酸;PAA,聚丙烯酸;PAE,聚酰胺胺-环氧氯丙烷;PAMAM,胺基端基第五代聚酰胺多巴胺;PBA,苯基硼酸;PCL,聚己内酯;PDA,聚多巴胺;PDMS,聚二甲基硅氧烷;PDT,光动力疗法;PEA,2-苯氧乙基丙烯酸酯;PEG,聚乙二醇;PEDOT,聚(3,4 乙烯二氧噻吩);PEI,聚乙烯亚胺;PEGDMA,聚乙二醇二甲基丙烯酸酯;PEMA,2-苯氧乙基甲基丙烯酸酯;PepT-1,肽转运蛋白-1;PG,焦性没食子酚;PGA,聚乙醇酸;pHEAA,聚(N-羟乙基丙烯酰胺);PMAA,羧甲基功能化聚甲基丙烯酸甲酯;PSA,压敏粘合剂;PTA,光热剂;PTT,光热疗法;PVA,聚乙烯醇;QCS,季铵化壳聚糖;rBalcp19k,重组白脊藤 cp19k;RGD,精氨酸-甘氨酸-天冬氨酸;rGO,还原氧化石墨烯; RLP,类弹性蛋白多肽;rMrcp19k,Megabalanus rosa cp19k;ROS,活性氧中间体;rSSps,重组蜘蛛丝蛋白;SCI,脊髓损伤;SCS,蚕茧片;SDBS,十二烷基苯磺酸钠;SDS,十二烷基硫酸钠;SDT,声动力疗法;SF,丝素;sIPN,半互穿聚合物网络;S. aureus,金黄色葡萄球菌;STING,干扰素基因刺激剂;SUPs,超荷电多肽;SY5,外皮蛋白抗体;TA,单宁酸;TEMED,四甲基乙二胺;TEMPO,2,2,6,6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素; Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。