摘要。心脏病的发病率和死亡率正在增加,这对公共卫生和全球经济产生了负面影响。心脏病的早期发现降低了心脏死亡率和发病率的发生率。最近的研究利用量子计算方法来预测5个以上的心脏病,并且在计算中进行了密集。尽管量子数数量较高,但较早的工作报告说,预测心脏病的准确性较低,没有考虑到异常效应,并且需要更多的计算时间和记忆来预测心脏病。为了克服这些局限性,我们建议使用几个量子位(2至4个)(2至4)提出混合随机森林量子神经网络(HQRF),并考虑了数据集中异常值的影响。在本研究中使用了两个开源数据集Cleveland和Statlog应用量子网络。所提出的算法已应用于两个开源数据集,并利用了两种不同类型的测试策略,例如10倍的交叉验证和70-30列车/测试率。我们将我们提出的方法论的性能与较早的算法(称为杂交量子神经网络(HQNN))的算法进行了比较。HQNN和HQRF在10倍的交叉验证和70/30列车/测试拆分率中的表现均优胜。结果表明,HQNN需要大型培训数据集,而HQRF更适合大型和小型培训数据集。根据实验结果,与HQNN相比,提出的HQRF对异常数据不敏感。与较早的作品相比,拟议的HQRF在使用Cleveland和Statlog数据集的预测心脏病方面的曲线(AUC)下达到了96.43%和97.78%的最大面积,使用HQNN。所提出的HQRF在早期检测心脏病方面非常有效,并将加快临床诊断。
准确的胺属性预测对于优化后燃烧过程中的CO 2捕获效率至关重要。量子机学习(QML)可以通过利用叠加,纠缠和干扰来捕获复杂相关性来增强预测性建模。在这项研究中,我们开发了杂交量子神经网络(HQNN),以改善CO 2接制胺的定量结构 - 性质关系模型。通过将变异量子回归器与经典的多层感知器和图形神经网络相结合,在无噪声条件下的物理化学属性预测中探索了量子优势,并使用IBM量子系统评估了针对量子硬件噪声的鲁棒性。我们的结果表明,HQNNS提高了关键溶剂特性的预测准确性,包括碱度,粘度,沸点,熔点和蒸气压。具有9个Quarbits的微调和冷冻预训练的HQNN模型始终达到最高排名,突出了将量子层与预验证的经典模型相结合的好处。此外,硬件噪声下的模拟证实了HQNN的鲁棒性,以保持预测性能。总体而言,这些发现强调了分子建模中杂交量子古典体系结构的潜力。随着量子硬件和QML算法继续推进,QSPR建模和材料发现中的实用量子益处有望变得越来越可实现,这是由量子电路设计,降解噪声和可扩展体系结构的改进而驱动的。