O'Donnell and Wright, STOC 2016 Haah, Kothari, O'Donnell, Tang, FOCS 2023 n ∼10 23 ! 学习如何成为可能?
• 测量构造:从普通的测量理论或具有某些“不寻常”对称性的平凡间隙系统开始,对其进行测量以获得分形。Vijay、Haah、Fu;Williamson;Devakul、You、Burnell、Sondhi;Shirley、Slagle、Chen;Williamson、Bi、Cheng;……
近年来,人们对各种自旋模型的兴趣越来越高,这些模型在常规晶格上定义,但仍具有“分形”特性。这些包括旋转液体模型的大规模旋转液体模型,其中在具有分形支撑的操作员的角落产生了固定的拓扑激发,或具有对分形子系统的对称性的自旋模型。前者的一个例子是Haah的代码[1],这是II型[2]分形式拓扑顺序[2-12]的经典模型。这样的3D阶段的特征是严格不动的拓扑准刺激。作为quantum代码,它们缺乏类似弦的逻辑运算符,而是在位点的分形子集上支持逻辑运算符。这些代码的分形性质导致有望作为量子记忆[13 - 15]。在各种环境中,更常规的分裂阶段受到了极大的关注[16-54]。后一种分形模型的一个例子是分形模型[55]。这些是正方形上的经典自旋模型,具有对称性的对称性,可以在位点的分形子集上旋转旋转。这些已被研究为经典代码[56 - 58]的信息 -
量子多体物理学中最根本的问题之一是热状态之间相关性的表征。是热区定律,它证明了张量网络近似与系统大小多项式生长的键尺寸的热状态。在足够低温的制度中,这对于实际应用至关重要,现有技术不会产生最佳界限。在这里,我们提出了一项新的热区法律,该法律适用于晶格上的通用多体系统。我们提高了从原始OðβÞ到Oðβ2= 3 = 3到对数因子的温度依赖性,从而提出了通过假想时间演化对纠缠的副球传播。这种定性与实时演化有所不同,这通常会诱导纠缠的线性生长。我们还证明了纯化和形成的纠缠的R'enyi纠缠的类似界限。我们的分析是基于对指数函数的多项式近似,该函数提供了假想时间演化与随机步行之间的关系。此外,对于带有N旋转的一维(1D)系统,我们证明了Gibbs状态由矩阵乘积运算符近似,具有sublinear键尺寸的β¼O½logðnÞ的均方根键尺寸。此证明使我们能够首次严格建立一种准时的经典算法,用于在β¼o½logðnÞ的任意温度下构建1D量子gibbs状态的矩阵量态表示。350 - 360]。我们的新技术成分是Gibbs状态的块分解,与Haah等人给出的实时进化的分解相似。[2018年IEEE第59届计算机科学基础年度研讨会(IEEE,纽约,2018年),pp。
理论也可能有助于解决量子计算和量子信息中的一些有趣问题(Carleo and Troyer 2017)。在本文中,我们应用在线学习理论来解决学习未知量子态的有趣问题。学习未知量子态是量子计算和量子信息中的一个基本问题。基本版本是量子态断层扫描问题(Vogel and Risken 1989),旨在完全恢复未知量子态的经典描述。虽然量子态断层扫描可以完整地表征目标状态,但成本相当高。最近的进展表明,在最坏情况下完全重建未知量子态需要指数级的状态副本(Haah 等人 2016;Odonnell 和 Wright 2016)。然而,在某些应用中,没有必要完全重建未知量子态。一些辅助信息就足够了。因此,一些学习任务会继续学习将一组双结果测量应用于未知状态的成功概率,并考虑某些指标。其中,阴影层析成像问题 (Aaronson 2018) 要求均匀估计集合中所有测量的成功概率。Aaronson (2018) 表明,阴影层析成像中未知状态所需的副本数量与量子比特的数量几乎呈线性关系,并且与测量次数呈多对数关系。更一般地,它可能不需要均匀估计所有双结果测量中误差内的成功概率。按照统计学习理论的思想,我们可以假设在某些可能的双结果测量中存在一个分布。我们的目标是学习一种量子态,使得从分布中采样的测量分别应用于学习状态和目标状态的成功概率之间的预期差异在特定误差范围内。这被称为量子态的统计学习模型或PAC学习模型。Aaronson(2007)证明,量子态PAC学习的样本数量只随着状态的量子比特数量线性增长,与全量子态层析成像相比,这是一个令人惊讶的指数减少。