摘要 — 量子计算是物理学、工程学和计算机科学之间多学科交叉领域的一个新兴领域,有可能对计算智能 (CI) 产生巨大影响。本文旨在向 CI 社区介绍量子近似优化方法,因为它与解决组合问题直接相关。我们介绍了量子计算和变分量子算法 (VQA)。VQA 是一种有效的方法,可以在近期在具有不太可靠量子位和早期纠错的嘈杂中型量子 (NISQ) 设备上实现量子解决方案。然后,我们解释了 Farhi 等人的量子近似优化算法(Farhi 的 QAOA,以避免混淆)。Hadfield 等人将此 VQA 推广到量子交替算子 ansatz (QAOA),这是一种受自然启发(特别是绝热)的量子元启发式算法,用于近似解决基于门的量子计算机上的组合优化问题。我们讨论了 QAOA 与相关领域的联系,例如计算学习理论和遗传算法,讨论了当前技术和有关混合量子-经典智能系统的已知结果。我们给出了 QAOA 的构建示意图,并讨论了如何使用 CI 技术来改进 QAOA。最后,我们给出了众所周知的最大割、最大二分和旅行商问题的 QAOA 实现,这些可以作为有兴趣使用 QAOA 的 CI 从业者的模板。
Yoshua Bengio Mila -Quebec AI研究所,蒙特罗张教大学AI国际治理研究所,张教大学shai Shaiv-Shalev-Shwartz,耶路撒冷吉利安·吉利安·哈德菲尔德大学多伦多,施瓦茨·雷斯曼学院。技术与社会,矢量研究所。不列颠哥伦比亚省杰夫·克莱恩大学,载体学院Tegan Maharaj大学多伦多大学,Schwartz Reisman Inst。技术与社会,矢量研究所。Frank Hutter Ellis Institute t ubingen,弗里伯格·阿利姆·吉纳斯大学卖出牛津·希拉·希拉·希拉·麦克拉斯大学多伦多,施瓦茨·雷斯曼学院。技术与社会,矢量研究所。Qiqi Gao东部中国政治学与法律大学Ashwin Acharya Rand公司David Krueger剑桥大学ANCA DRAGAN DRAGAN UC BERKELEY UC BERKELEY PHILIP UNIOPYS OXFORD FORDER OXFORD StUART Stuart Russell UC Berkeley Daniel Daniel Daniel Kahneman公立与国际事务学院学院,大学Qiqi Gao东部中国政治学与法律大学Ashwin Acharya Rand公司David Krueger剑桥大学ANCA DRAGAN DRAGAN UC BERKELEY UC BERKELEY PHILIP UNIOPYS OXFORD FORDER OXFORD StUART Stuart Russell UC Berkeley Daniel Daniel Daniel Kahneman公立与国际事务学院学院,大学
(i) 每个人都有责任保护其他实验室用户和自己的健康和安全,因此应该熟悉《学校安全手册》。 (ii) 学术主管对研究小组活动的健康和安全负全部责任,因此必须确保员工、学生和访客熟悉本《行为准则和风险评估》以及《学校安全手册》的内容并遵守其要求。 (iii) 未经实验室监护人 Robert Hadfield 教授许可,不得在量子传感器实验室 Rankine 222b 内开展任何研究活动。 (iv) 除非本表格中的风险评估(第 B 部分)涵盖,否则不得开展任何工作。新活动应与主管、实验室监护人和学校安全主任讨论。 B 部分应在批准后进行相应更新。 (v) 当前《行为准则和风险评估》的电子版应发送给实验室负责人,并与学校安全主任分享。实验室入口内墙上的橙色文件夹中展示了当前《操作守则和风险评估》的印刷版,该版由所有当前用户签名并注明日期(电子版或实体版)(C 部分)。 (vi) 所有实验室用户必须熟悉学校安全手册中强调的一般安全程序以及实验室内安全设备的位置。总结: • 紧急情况下,请拨打电话号码 4444(内部),0141 330 4444(外部) • 紧急出口位于实验室内。要离开 Rankine 大楼,请使用主楼梯间(而不是电梯) • 灭火器位于 2 楼的主楼梯间 • 实验室和 4 楼的管理员办公室提供急救箱。 (vii) 在正常办公时间(上午 8 点至下午 5 点)以外和周末工作需要您的主管许可。非工作时间工作簿位于实验室大厅
Miles Brundage 1† 、Shahar Avin 3,2† 、Jasmine Wang 4,29†‡ 、Haydn Belfield 3,2† 、Gretchen Krueger 1† 、Gillian Hadfield 1,5,30 、Klaaf Jing 67 、Helen Toner 8 , Ruth Fong 9 , Tegan Maharaj 4.28 , Pang Wei Koh 10 , Sara Hooker 11 , Jade Leung 12 , Andrew Trask 9 , Emma Bluemke 9 , Jonathan Lebensold 4.29 , Cullen O'Keefe , Mark Koren 11 13 , Théo Ryffel 14 , JB Rubinovitz 15 , Tamay Besiroglu 16 , Federica Carugati 17 , Jack Clark 1 , Peter Eckersley 7 , Sarah de Haas 18 , Maritza Johnson 18 , Ben Laurie 18 , Alex Ingerman 18 , Amanda Kraw 19 , Amanda Askew , Rosario Cammarota 20 , Andrew Lohn 21 ,大卫·克鲁格 4.27 , 夏洛特·斯蒂克斯 22 , 彼得·亨德森 10 , 洛根·格雷厄姆 9 , 卡丽娜·普伦克尔 12 , 比安卡·马丁 1 , 伊丽莎白·西格 16 , 诺亚·齐尔伯曼 9 , 塞吉安 23 , 弗伦斯·克鲁格 23 , 吉里什·萨斯特里 1 , 丽贝卡·卡根 8 , 阿德里安·韦勒 16.24 , 谢志伟 12.7 , 伊丽莎白·巴恩斯 1 , 阿兰·达福 12.9 , 保罗·沙尔 25 , 阿里尔·赫伯特-沃斯 1 , 马丁·拉瑟 25 , 沙尔根 4.27 , 卡里克·弗林 8 , 托马斯·克伦德尔·吉尔伯特 26 , 丽莎·戴尔 7 , 赛义夫·汗 8 , 约书亚·本吉奥 4.27 ,马库斯·安德永 12
b非洲可持续农业研究所(ASARI)Mohammad VI理工大学(UM6P),Laayoune,摩洛哥C C C型化学系,沙特国王大学,里亚德大学11451年,沙特阿拉伯,阿拉伯人11451 Sheffield,S1 3JD,英国,在这项工作中,纯和MG-CU共掺杂的氧化锌薄膜都是由Sol-Gel Spin涂层技术制备的。微观玻璃基板用于合成薄膜。通过X射线光谱(XRD),光致发光光谱(PL),扫描电子显微镜(SEM),紫外线可见光谱(UV-VIS)和能量分散X射线分析(EDX)检查薄膜。XRD揭示了膜的六边形Wurtzite阶段。对于纯和MG-CU共掺杂的ZnO,观察到的晶粒尺寸分别为23.34 nm至15.94 nm。SEM图像显示了晶粒尺寸的增加,并通过MG-CU共掺杂表面平滑。通过EDX分析证实了ZnO纳米膜中Mg和Cu的存在。紫外线分析显示,掺杂的透射百分比增加。TAUC关系用于估计样品的带隙,并观察到带隙的显着转移。光致发光图显示出更大的发射和掺杂的表面缺陷。可见的光谱完全被低水平的发射覆盖。(2024年7月1日收到; 2024年10月8日接受)关键字:掺杂;传播;纳米颗粒;光致发光1。[3,4]。引言Nano材料有可能通过提高能源转换,存储和传输的效率来彻底改变能源领域。纳米材料可以设计为具有独特且通常是出乎意料的特性,这些特性在散装材料中没有看到,这使得它们对能源应用特别有希望。在当今时代,纳米赛车在舒适人类的能源生产和分配方面做出了巨大的改进。现代技术进步,最终要求更有效的物理和化学技术来开发和生产高级系统,以及不同形式的能源的转换。尽管有一个事实,即尚未耗尽全球化石资产,但是我们目前使用的不同形式的能源的不适当模式的破坏性健康,社会和生态效应是显而易见的[1,2]。能源生产的最大规模替代品以维持和改善由于人口增长和全球化的生命标准,并改善了我们的生活标准素。似乎很可能会增加温室气体的排放,并在未来50年中导致未来的全球变暖。能源与气候变化之间的联系强调了迫切需要过渡到更可持续和弹性的能源系统,该系统可以支持经济发展并改善人民和地球的福祉。这需要政府,企业和个人的共同努力,以优先考虑和投资清洁能源技术和实践,并减少经济各个部门的温室气体排放。