AlGaN/GaN高电子迁移率晶体管(HEMT)或金属绝缘体半导体HEMT(MIS-HEMT),凭借优越的极化诱导高迁移率二维电子气(2DEG),因其高开关速度、低寄生参数和低导通电阻而受到广泛关注,并在高频射频和功率开关应用方面都取得了公认的成功[1-4]。通常在厚钝化电介质(如SiNx)上设置栅极和/或源极场板,以减轻栅极漏极区域的高电场并获得更高的击穿电压[5-7]。它们也有助于抑制表面态引入的电流崩塌[5,8]。然而,场板结构将引入额外的寄生电容,导致更高的VDS×IDS功率损耗和更长的开关持续时间。此外,钝化层还会引入钝化电介质/(Al)GaN界面态,甚至电介质本身的体态,它们的捕获/去捕获过程会引起寄生电容的动态漂移,导致实际应用中开关转换紊乱,dV/dt控制失效[9-11]。
在过去的二十年中,Gan Hemts(高电子迁移率晶体管)已证明其超过硅电源器件限制的高潜力。然而,基于GAN的侧向下摆遭受了几个突出的问题,例如电子捕获和相关的设备可靠性,这是由于闸门边缘处的尖峰电场以及没有雪崩效应。此外,较高的击穿电压需要增加门才能排出距离,从而导致不需要的大设备尺寸。这就是为什么垂直GAN Power设备越来越引起人们的兴趣和社区的强烈努力的原因。的确,高击穿电压,雪崩能力,具有高电流扩展的电场管理和小型设备足迹是垂直电源设备的一些主要优势。如果在硅底物上生长,则可以大大降低整体成本。在这项工作中,我们演示了具有高性能和线性击穿电压缩放的准垂直gan-on-si销钉二极管,并具有漂移层的厚度。完全垂直销钉二极管也被制造出了相似的崩溃场,甚至可能降低了反抗性的罗恩。
对于SIC MOSFET和GAN HEMTS,可以利用第三个象限传导能力用于自由式,而无需外部二极管。在这种情况下,第三象限反向传导是通过电源设备的车身二极管或通道进行的,电流从源到排水侧的流动。SIC具有P-I-N身体二极管,但是,GAN没有任何固有的二极管。反向传导通过SIC和GAN的通道发生的固有二极管发生。gan的反向传导特征往往较差,尤其是在应用阳性闸门源偏置的情况下(图2)[3]由于较高的耗尽电压下降的来源。反向导出时间是较高和较低开关之间的停留时间是GAN性能的关键因素之一。
近年来,高精度感测和高质量的交流对综合电路的运行频率施加了巨大的要求,从W波段到G频段到G频段甚至Terahertz,这一频率增加了。[1,2]采用了多种技术来扩展摩尔法律并证明设备的频率特征,例如新型结构[3,4]和制造技术。[5]基于INP的高电子迁移式晶体管(HEMTS)具有降级的高载体板密度,峰值漂移速度和低轨道迁移率,并且记录的频率特性已超过1 THz。[6]因此,它们被认为是即将到来的THZ卫星通信和深空检测系统的功率放大器(PAS)和低噪声放大器(LNA)的有前途的候选者。[7 - 10]
Mie University,MIE 514-8507,日本摘要 - 超宽带隙(UWBG)材料(例如ALN)是一类材料的一部分,这些材料的一部分比传统的宽带隙(WBG)材料(例如GAN),例如GAN,例如GAN,允许更高的工作电压。在这项工作中,我们介绍了Aln/Algan/Aln双重异质结构的制造和DC/高压表征,这些异质结构是由Aln/Sapphire上的Metal Organic Chemical Vapor沉积重生的。报道了低于2µm的间距的泄漏电流约1100V的缓冲区分解,这对应于大约6 mV/cm的分解场。此外,晶体管在此异质结构上已成功制造,泄漏电流低和抗性低。确实已经达到了4.5 kV的击穿电压,而现状泄漏电流确实已经达到0.1 µA/mm。这些结果表明,Algan-Channel Hemts对高功率,高温未来的应用有希望。
抽象是单层整体上的三级闸门驱动器和氮化剂高电子迁移式晶体管(GAN HEMTS),以防止错误的转机,减少反向传导损失和实现快速切换。所提出的栅极驱动器与提供负门电压的外部和集成电容器一起工作。整体集成使电源转换电路的尺寸较小,并且由于其较低的寄生虫而改善了电路性能。集成的MIM(金属绝缘子 - 金属)电容器可改善DV/DT免疫力。的测量结果表明,所提出的GAN-IC实现了3.7 ns t和6.1 ns t o的快速切换速度,并提高了SR降压逆变器的效率。关键字:Gan Hemt,整体集成,三级闸门驱动程序,错误的转机,反向传导损失,高速切换分类:电源设备和电路
本文报告了两项 AlGaN / GaN 高电子迁移率晶体管 (AlGaN / GaN HEMT) 技术(器件“A”和器件“B”)的可靠性研究。对雷达应用的实际工作条件下承受应力的器件进行了故障分析研究。这些器件经过脉冲射频长期老化测试,11000 小时后射频和直流性能下降(漏极电流和射频输出功率下降、夹断偏移、跨导最大值下降、跨导横向平移以及栅极滞后和漏极滞后增加)。热电子效应被认为是钝化层或 GaN 层中观察到的退化和捕获现象的根源。光子发射显微镜 (PEM)、光束诱导电阻变化 (OBIRCH)、电子束诱导电流 (EBIC) 测量与这一假设一致。这三种技术揭示了沿栅极指状物的非均匀响应和不均匀分布,此外,在漏极侧或源极侧的栅极边缘上存在一些局部斑点。对这些斑点进行光谱 PEM 分析可识别出可能与位错或杂质等晶体缺陷有关的原生缺陷。对 AlGaN / GaN HEMT 的两种技术进行的原子探针断层扫描 (APT) 分析支持了这一假设。APT 结果显示存在一些化学杂质,如碳和氧。这些杂质在器件“A”中的浓度相对较高,这可以解释与器件“B”相比,该器件的栅极滞后和漏极滞后水平较高。
ED1-2 ( 口头 ) 14:45 - 15:00 通过掺杂分布工程提高 p-GaN 栅极 HEMT 的稳健性 Matteo Borga 1 , Niels Posthuma 1 , Anurag Vohra 1 , Benoit Bakeroot 2 , Stefaan Decoutere 1 1 比利时 imec,2 比利时 imec、CMST 和根特大学 ED1-3 ( 口头 ) 15:00 - 15:15 在低 Mg 浓度 p-GaN 上使用退火 Mg 欧姆接触层的横向 p 型 GaN 肖特基势垒二极管 Shun Lu 1 , Manato Deki 2 , Takeru Kumabe 1 , Jia Wang 3,4 , Kazuki Ohnishi 3 , Hirotaka Watanabe 3 , Shugo Nitta 3 , Yoshio Honda 3 , Hiroshi Amano 2,3,4 1 日本名古屋大学工程研究生院、2 日本名古屋大学深科技系列创新中心、3 日本名古屋大学可持续发展材料与系统研究所、4 日本名古屋大学高级研究所 ED1-4(口头) 15:15 - 15:30 高 VTH E 模式 GaN HEMT 具有强大的栅极偏置相关 VTH 稳定性掺镁 p-GaN 工程 吴柯乐 2 , 杨元霞 2 , 李恒毅 2 , 朱刚廷 2 , 周峰 1 , 徐宗伟 1 , 任方芳 1 , 周东 1 , 陈俊敦 1 , 张荣 1 , 窦友正 1 , 海陆 1 1 南京大学, 中国, 2 科能半导体有限公司, 中国 ED1-5 (口头报告) ) 15:30 - 15:45 EID AlGaN/GaN MOS-HEMT 中 Al 2 O 3 栅氧化膜下的电子态分析 Takuma Nanjo 1 , Akira Kiyoi 1 , Takashi Imazawa 1 , Masayuki Furuhashi 1 , Kazuyasu Nishikawa 1 , Takashi Egawa 2 1 Mitsubishi electric Corporation, Japan, 2 Nagoya Inst.日本科技大学
由于在高频和高功率固态微波电源设备中的巨大潜在应用,基于GAN的高电子迁移式晶体管(HEMTS)在过去的二十年中引起了很多关注,并且在实现市场商业化方面取得了巨大进展。为了进一步提高设备性能,尤其是在高压,高级材料和设备制造过程中,提出了新颖的设备结构和设计的高操作频率和设备可靠性。在提出的方法中,由于其独特的优质材料特性,基于Inaln的晶格匹配的异质结构可能成为下一个下摆的首选。在本文中,结合了III III化合物半导体材料和设备领域的相对研究工作,我们简要综述了基于Inaln基于Inaln的异质结构半导体组合的艺术状态的进展。基于对基于INALN的异质结构的外延生长的分析,我们讨论了提出的脉冲(表面反应增强)金属有机化学蒸气沉积(MOCVD)的优势和成就,用于INALN/GAN异质结构的外交。
Ana Villamor博士是YoleDévelopment(Yole)电力和无线部门内电力电子和复合半导体的技术和市场分析师。她参与了许多定制研究和报告,重点是新兴电力电子技术,包括设备技术以及MOSFET,IGBTS,HEMTS,Power IC等的可靠性分析。她还参与了EV/HEV的各个方面,并且已经获得了对电力电子行业的深入了解。Villamor博士以前曾在Onsemi担任设备开发工程师,在那里她获得了博士学位。与CNM-IMB-CSIC合作。 此外,她拥有巴塞罗那大学(SP)的Micro和Nano Electronics的电子工程学位和硕士学位。 她撰写并与他人合着了几篇论文以及专利。Villamor博士以前曾在Onsemi担任设备开发工程师,在那里她获得了博士学位。与CNM-IMB-CSIC合作。此外,她拥有巴塞罗那大学(SP)的Micro和Nano Electronics的电子工程学位和硕士学位。她撰写并与他人合着了几篇论文以及专利。