本研究旨在考察哪些因素最能解释日本帝国海军(IJN)在二战期间通过军事创新取得的初始优势。为此,本文分析了两次世界大战期间对日本航空母舰和飞机创新影响最大的因素。研究发现,技术、国际关系和适应性以各种方式对日本帝国海军的军事创新产生了积极影响。凭借新开发的航空技术,日本帝国海军为军事创新奠定了基础,这有助于应对两项海军裁军条约;通过第二次中日战争,日本帝国海军阐述了其飞机和航空母舰理论。换句话说,日本帝国海军在两次世界大战期间的军事创新是由技术推动的,由现实主义/国际关系理论驱动的,并通过适应性得到增强。本研究通过研究积极因素并提出制定国防政策的考虑因素,加强了现有的军事创新研究。
4 天前 — ROSECRANS。扩大联合结构。(陆军和海军无线电室)。比例:IJN 10 英尺。位置图。共 5 张。基准 13 平均低水位。图纸编号。
的排水量不得超过 27,000 吨(也不能携带任何大于八英寸的火炮)。条约签订时,发明了全航空战舰的英国已经服役 5 艘航空母舰,另有两艘正在建造中。除第一艘外,其他所有航空母舰的排水量都在 26,000 至 29,000 吨之间,这显然是条约对单艘舰船设限的原因。相比之下,美国尚未服役其第一艘航空母舰兰利号 (CV 1),该航母是一艘改装的运煤船,满载时排水量约为 14,000 吨。日本正在建造其第一艘航空母舰——世界上第一艘从龙骨开始建造而非改装的专用航母——日本海军凤翔号,排水量略低于 10,000 吨。 5 考虑到皇家海军的优势,条约会议宣布兰利号和凤翔号为“实验性”舰艇,因此不计入吨位限制。6
摘要:通过比较底物依赖性生长动力学,研究了 6 种具有不同生长策略的大型藻类在低氮 (N) 供应下维持生长的能力。在夏季藻类受氮限制时,通过实验确定了维持最佳生长所需的氮和 2 种慢速生长藻类的氮吸收动力学。Fucus r~resiculosus 和 Codium fragilc 以及 4 种快速生长的藻类,Chnetolnorpha Ij~~rn、Cladophora serica、Cerarn~um rubrum 和 Ulva lactuca。在藻类中维持最大生长所需的氮在藻类中相差 16 倍,其中慢速生长的藻类对氮的需求最高。短命藻类对氮的需求较高,这是因为其生长速度最高可达 13 倍,最大生长时氮含量高出 2 至 3 倍。另外,在低和高底物浓度下,快速生长的藻类吸收单位生物量铵和硝酸盐的速度比慢速生长的藻类快 4 至 6 倍,但慢速生长的藻类的最大磷吸收量与需求量的比值较大。因此,快速生长的藻类往往需要相对较高的外部无机氮浓度来达到饱和生长。在氮受限条件下,所有 6 种大型藻类都能通过短暂增强的速率吸收铵(即激增吸收)来利用高浓度铵的脉冲。然而,在较低的、自然存在的铵浓度下,吸收量仅略有增强,这表明激增吸收的生态重要性较小。我们的结果表明,在低氮供应条件下,生长缓慢的大型藻类可能比快速生长的藻类更能满足其氮需求。这与常见的观察结果一致,即营养贫乏的沿海地区主要以生长缓慢的大型藻类为主,而不是短命物种,尽管短命物种的氮吸收能力更高。