已在无人机中实施(Zarco-Tejada、González-Dugo 和 Berni,2012 年;Hruska 等人,2012 年;Büttner 和 Röser,2014 年;Suomalainen 等人,2014 年;Lucieer 等人,2014 年)。以 2D 帧格式原理运行的小型化高光谱成像仪是一种捕获光谱特征的新颖传感方法(Mäkynen 等人,2011 年;Saari 等人,2013 年;Honkavaara 等人,2013 年;Näsi 等人,2015 年;Aasen 等人,2015 年)。 2015)。 2D 帧格式由于其刚性的矩形几何形状和多个重叠图像而提供了强大的几何和辐射约束(Honkavaara 等人,2012 年)。该框架为无人机遥感提供了有趣的可能性,因为它可以产生比推扫式扫描,使用更少的地面控制点 (GCP) 和较低等级的惯性导航系统 (INS)。
神经母细胞瘤(NB)是童年时期最常见,最致命的实体瘤,其特征是从自发性回归到无情进展的异质行为(1)。尽管早期诊断和新的治疗方法,但NB复发仍然是该领域最大的临床挑战之一,并对生存产生了不利影响(2)。在大量的NB儿童中,遥远的转移发生了多年甚至数十年的潜伏期。在50%以上的病例中发生复发,5年生存率小于40%(3)。许多生物标志物已向医师提供有关NB的治疗和预后的指导,包括国际神经母细胞瘤分期系统(INSS)阶段,MYCN(N-MYC,骨髓细胞膜症癌),诊断年龄,诊断年龄,组织学类别,分化等级,差异,Karyorrhexis Inderex(Mkaryorrhexis Inder)(Mkaryorrhexis)(Mkiy)(Mkiy)(Mki)和pna。但是,这些生物标志物都无法准确预测复发(4,5)。尽管在强化多模式治疗方面取得了进展,但大多数高风险NB诊断时会出现广泛转移性疾病,并且在治疗后最初或最终对常规疗法反应,长期生存率小于50%(3)。免疫疗法可以大大提高癌症患者的存活率,而
James Blankenship 是联邦调查局在弗吉尼亚州匡蒂科 FBI 实验室的法医检验员,他领导着对大规模杀伤性武器的调查工作,特别是核武器和放射性扩散装置的威胁。作为一名美国空军军官,他曾担任五角大楼的执行官,支持国防部长助理负责核、化学和生物防御计划。作为国防威胁降低局的项目经理,他为抗辐射微电子先进技术计划提供技术监督和项目指导,并作为 DTRA 特遣队的一部分被派往伊拉克调查组。Blankenship 拥有德克萨斯 A&M 大学的化学博士学位、代顿大学的材料工程硕士学位和弗吉尼亚军事学院的化学学士学位。M. Elaine Bunn 是国防部负责核和导弹防御政策的副助理部长,她负责指导政策副部长的办公室,制定和审查部门和国家核和导弹防御能力政策。这些职责包括定义未来能力的要求、审查和调整作战计划、领导讨论以制定与盟友和朋友的战略和选择以及在核力量、全球打击和导弹防御领域的国际合作或协议。 在 2013 年获得任命之前,邦恩是国防大学国家战略研究所 (INSS) 战略研究中心的杰出研究员,她在那里领导了一个关于未来战略概念的项目。 在 2000 年加入 INSS 之前,她是国防部长办公室 (OSD) 的高级主管,在那里从事国际安全政策工作了 20 年。 1993 年至 1998 年,她担任核力量和导弹防御政策首席主任。 在此期间,她担任 1994 年核态势评估的执行主任。 她在 OSD 的其他职责包括战略防御政策办公室、战略军备控制政策办公室和战区核力量政策办公室。邦恩发表了许多关于威慑、盟友保证、战略规划、核政策、导弹防御和先发制人的文章和书籍章节,并经常在美国和国际会议上就这些问题发表演讲。汤姆·科里纳是华盛顿特区犁头基金会的政策主管。科里纳作为研究员、分析师和倡导者,广泛致力于加强终止美国核试验、合理化反导计划、延长《不扩散条约》和确保参议院批准《新削减战略武器条约》的努力。在 2014 年加入犁头基金会之前,科里纳曾担任军备控制协会的研究主任。他曾担任科学与国际安全研究所执行主任兼联合创始人、忧思科学家联盟全球安全项目主任等领导职务。他在主要杂志和期刊上发表过大量文章,并频繁出现在全国性媒体上,包括《纽约时报》、美国有线电视新闻网和美国国家公共电台。他曾在参议院外交关系委员会作证,并定期向国会工作人员做简报。科利纳拥有康奈尔大学国际关系学位。托比·道尔顿是卡内基基金会核政策项目联席主任。作为防扩散和核能专家,他的工作涉及地区安全挑战和全球核秩序的演变。2002年至2010年,道尔顿在美国能源部担任过多个高级职位,包括核保障和安全办公室代理主任和防扩散与国际安全办公室高级政策顾问。他还于 2008 年至 2009 年期间建立并领导了美国驻巴基斯坦大使馆的该部门办公室。道尔顿此前曾担任
原理:代谢的协同重编程主导神经母细胞瘤 (NB) 的进展。基于阐明代谢重编程的分子机制,开发一种具有分层指导的 NB 治疗选择的个性化风险预测方法具有重要的临床意义。方法:利用基于机器学习的多步骤程序,在单细胞和代谢物通量维度上阐明代谢重编程驱动的 NB 恶性进展的协同机制。随后,开发了一种有前景的代谢重编程相关预后特征 (MPS) 和基于 MPS 分层的个性化治疗方法,并使用临床前模型进一步独立验证。结果:MPS 鉴定的 MPS-I NB 表现出比 MPS-II 对应物明显更高的代谢重编程活性。 MPS 在预测预后方面比目前的临床特征 [AUC:0.915 vs. 0.657(MYCN)、0.713(INSS 分期)和 0.808(INRG 分层)] 表现出更高的准确性。AZD7762 和依托泊苷分别被确定为针对 MPS-I 和 II NB 的有效治疗药物。后续生物学测试表明,AZD7762 显著抑制 MPS-I NB 细胞的生长、迁移和侵袭,且效果优于 MPS-II 细胞。相反,依托泊苷对 MPS-II NB 细胞的治疗效果更好。更令人鼓舞的是,AZD7762 和依托泊苷分别显着抑制了 MPS-I 和 MPS-II 样本中的体内皮下肿瘤形成、增殖和肺转移;从而延长了荷瘤小鼠的生存期。从机制上看,AZD7762 和依托泊苷分别通过线粒体依赖性途径诱导 MPS-I 和 MPS-II 细胞凋亡;而 MPS-I NB 通过依赖谷氨酸代谢和乙酰辅酶 A 抵抗依托泊苷诱导的细胞凋亡。MPS-I NB 进展受到多种代谢重编程驱动因素的推动,包括多药耐药性、免疫抑制和促肿瘤炎症微环境。从免疫学上看,MPS-I NB 通过 MIF 和 THBS 信号通路抑制免疫细胞。代谢方面,重编程的谷氨酸代谢、三羧酸循环、尿素循环等显著支持了 MPS-I NB 细胞的恶性增殖。此外,MPS-I NB 细胞表现出独特的促肿瘤发育谱系和自我通讯模式,这表现为随着发育和自我通讯而激活的致癌信号通路增强。结论:本研究深入了解了代谢重编程介导的 NB 恶性进展的分子机制。它还为开发以新的精确风险预测方法为指导的靶向药物提供了启示,这可能有助于显著改善 NB 的治疗策略。