随着对全球量子技术的日益兴趣,越来越需要访问相关的物理系统进行教育和研究。在本演示文稿中,我们使用超导技术引入了一台商业上可用的现场量子计算机,并提供了对其基本硬件和软件组件的见解。我们展示了如何在教育中使用该系统来教授量子概念并加深对量子理论和量子计算的理解。它为未来的人才提供了学习机会,并为技术进步做出了贡献。此外,我们证明了它在研究中的使用。
在本文中,我们将探讨 IQM 量子计算机的技术进步,重点介绍 QPU 和完整的全栈量子计算机。我们的重点是一台 20 量子比特量子计算机,它采用 IQM Garnet QPU,我们将把它扩展到 150 个量子比特。此外,我们还分享了 QPU 和系统级别的基准,重点介绍了一些成就,例如 2 量子比特门保真度中值为 99.5%,以及所有 20 个量子比特在 Greenberger-Horne-Zeilinger (GHZ) 状态下的真正纠缠。
单色光或进入特定周期性培养基的物质波显示出尖锐的bragg散射到特定的角度。然而,随机干扰完美的晶格位置会导致布拉格峰之间的弥散散射。随着分散体的增加,弥散散射最终占主导地位,最后,布拉格峰消失了。弥散散射是结构化的,在介质中揭示了相关性。例如,用于在水中X射线散射[1,2],可见光在单分散聚苯乙烯珠的无序堆积中的散射[3,4],这对相关函数具有宽峰,具有特征长度尺度,这又在结构函数中产生宽峰。在无序培养基的研究中,布拉格峰与周期性结构有关[5,6]。但是,没有预期的是,在任何规模上没有完美顺序的随机介质可以产生尖锐的散射角度,但我们在这里报告了这样的情况。对于我们选择的潜力,空间自相关函数具有宽峰,因为原子对相关函数在水中,但散射角度仍然非常清晰。这很令人震惊;下面定义的随机电势中的散射就像是在周期性电势中的布拉格散射,而不是相关液体中的散射。最接近的类似物(尽管不是完美的类似物)是粉末衍射,许多随机定向的微晶被密切包装。下面定义的电势没有这样的“微晶”,但它具有bragg峰。但是,散射的时间演变与Fermi的黄金法则不兼容,如下所述。我们通过检查电势的傅立叶成分来计算散射矩阵元素或等效地来解释这一惊喜。我们考虑以下形式的随机电势
远距离传递量子信息的能力在量子科学与工程中至关重要 1 。尽管量子通信的某些应用(如安全量子密钥分发 2,3 )已经成功部署 4–7 ,但它们的范围目前受到光子损耗的限制,并且无法使用直接的测量和重复策略进行扩展,而不会损害无条件安全性 8 。或者,利用中间量子存储节点和纠错技术的量子中继器 9 可以扩展量子通道的范围。然而,它们的实施仍然是一个悬而未决的挑战 10–16 ,需要高效和高保真量子存储器、门操作和测量的组合。在这里,我们使用集成在纳米光子金刚石谐振器 17–19 中的单个固态自旋存储器来实现异步光子贝尔态测量,这是量子中继器的关键组件。在原理验证实验中,我们展示了高保真操作,该操作在兆赫时钟速度下运行时有效地实现了量子通信,其速率超过了理想的等效损耗直接传输方法。这些结果代表着朝着实用量子中继器和大规模量子网络迈出了关键一步 20,21 。