研究生院杰出论文奖UT Austin 2024 DAC博士第三名。 Forum DAC 2023 MLSys Student Travel Award MLSys 2023 Margarida Jacome Dissertation Prize UT Austin 2023 Winner at Robert S. Hilbert Memorial Optical Design Competition Synopsys 2022 Donald O. Pederson Best Paper Award IEEE TCAD 2021 Cockrell School Graduate Student Fellowship UT Austin 2021 First Place at ACM Student Research Competition Grand Finals ACM 2021 Best Poster Award at NSF Workshop on Machine Learning Hardware NSF Workshop 2020 First Place at ACM/SIGDA Student Research Competition ACM/SIGDA 2020 7th Place at IWLS Contest on Machine Learning+Logic Synthesis IWLS 2020 DAC Young Fellow DAC 2020,2021 Best Paper Finalist (1 out of 6) DAC 2020 Best Paper Award ASP-DAC 2020 4th Place, System Design Contest on Low Power Object Detection DAC-SDC 2019 First奖学金奖学金Fudan University 2017–2018第二奖和第三奖,国家数学竞赛2016 - 2017年模型研究生院杰出论文奖UT Austin 2024 DAC博士第三名。 Forum DAC 2023 MLSys Student Travel Award MLSys 2023 Margarida Jacome Dissertation Prize UT Austin 2023 Winner at Robert S. Hilbert Memorial Optical Design Competition Synopsys 2022 Donald O. Pederson Best Paper Award IEEE TCAD 2021 Cockrell School Graduate Student Fellowship UT Austin 2021 First Place at ACM Student Research Competition Grand Finals ACM 2021 Best Poster Award at NSF Workshop on Machine Learning Hardware NSF Workshop 2020 First Place at ACM/SIGDA Student Research Competition ACM/SIGDA 2020 7th Place at IWLS Contest on Machine Learning+Logic Synthesis IWLS 2020 DAC Young Fellow DAC 2020,2021 Best Paper Finalist (1 out of 6) DAC 2020 Best Paper Award ASP-DAC 2020 4th Place, System Design Contest on Low Power Object Detection DAC-SDC 2019 First奖学金奖学金Fudan University 2017–2018第二奖和第三奖,国家数学竞赛2016 - 2017年模型
近似计算是针对容错应用的一种新兴设计范式,例如信号处理和机器学习。在近似计算中,近似电路的面积、延迟或功耗可以通过牺牲其精度来改善。在本文中,我们提出了一种基于节点合并技术并保证错误率的近似逻辑综合方法。我们的方法的思想是用常数值替换内部节点,并合并电路中两个功能相似的节点。我们在一组 IWLS 2005 和 MCNC 基准上进行了实验。实验结果表明,我们的方法最多可以减少面积 80%,平均减少 31%。与最新方法相比,在同样 5% 的错误率约束下,我们的方法加速了 51 倍。
摘要 - 与CMOS过程技术缩放,制造纳米级晶体管,触点和互连的掩模成本变得非常昂贵,特别是对于低容量设计。此外,较高的晶体管密度导致了较高的设计复杂性和大型模具,这导致了设计周期时间的增加和过程产量下降。这些挑战迫使小批量应用特异性集成电路(ASIC)朝着高度次优的可编程栅极阵列(FPGAS)朝向高度的。In this arti- cle, we propose a new approach for designing and fabricating high-mix, low-volume heterogeneously integrated ASICs, referred to as Microscale Modular Assembled ASIC (M2A2), consisting of: 1) pick-and-place assembly of prefabricated blocks (PFBs) which utilizes the nano-precision placement capabilities developed in jet-and-flash imprint lithography (J-FIL)和2)EDA设计方法利用无监督的学习和图形匹配技术。EDA方法论利用现有的CAD工具基础架构,以便于当前的EDA生态系统中采用。所提出的制造技术利用采摘和地组装技术允许PFBS的纳米专业组装。PFB可以用高级过程节点制造,然后在晶圆基板上编织在一起。然后可以在PFB编织层的顶部创建/放置定制设计的低成本后端金属层,以实现各种高混合,低量的ASIC设计。M2A2将通过最佳的PFB选择和编织在前端设计中具有更大的功能。在本文中,基于M2A2的设计的性能与不同的设计技术(例如基线ASIC,FPGA和SASIC)相对,在16 nm,40 nm和130 nm CMOS ProudeS节点上。PNR后模拟结果超过15个IWL基准测试表明,所提出的M2A2设计实现了27。11× - 34。89×降低功率 - 否决产物(PDP),并产生1。69× - 2。与基线ASIC相比, 36倍面积。 M2A2设计达到15%–68.5%36倍面积。M2A2设计达到15%–68.5%