摘要 —近年来,深度学习 (DL) 对基于脑电图 (EEG) 的运动想象脑机接口 (MI-BMI) 的改进做出了重大贡献。在实现高分类准确率的同时,DL 模型的规模也不断扩大,需要大量的内存和计算资源。这对嵌入式 BMI 解决方案提出了重大挑战,该解决方案应通过本地处理数据来保证用户隐私、减少延迟和低功耗。在本文中,我们提出了 EEG-TCN ET,一种新颖的时间卷积网络 (TCN),它在只需要少量可训练参数的情况下实现了出色的准确率。其低内存占用和低推理计算复杂度使其适合在资源有限的边缘设备上进行嵌入式分类。在 BCI 竞赛 IV- 2a 数据集上的实验结果表明,EEG-TCN ET 在 4 类 MI 中实现了 77.35% 的分类准确率。通过为每个受试者找到最佳网络超参数,我们进一步将准确率提高到 83.84%。最后,我们在 Mother of All BCI Benchmarks (MOABB) 上展示了 EEG-TCN ET 的多功能性,这是一个包含 12 个不同 EEG 数据集和 MI 实验的大规模测试基准。结果表明,EEG-TCN ET 成功地推广到单个数据集之外,在 MOABB 上的表现比目前最先进的 (SoA) 好 0.25 倍。索引术语 — 脑机接口、运动意象、深度学习、卷积神经网络、边缘计算。
摘要 — 目标:构建一个可以在单个受试者的小型 EEG 训练集上进行训练的 DL 模型提出了一个有趣的挑战,这项工作正试图解决这一挑战。具体来说,本研究试图避免长时间的 EEG 数据收集过程,并且不组合多个受试者的训练数据集,因为这会对分类性能产生不利影响,因为受试者之间的个体间差异很大。方法:使用大约 120 次 EEG 试验对定制的具有混合增强功能的卷积神经网络进行训练,每个模型仅针对一个受试者。结果:经过修改的具有混合增强功能的 ResNet18 和 DenseNet121 模型分别实现了 0.920(95% 置信区间:0.908,0.933)和 0.933(95% 置信区间:0.922,0.945)的分类准确率。结论:我们表明,尽管本研究使用的训练数据集有限,但与同一数据集上先前研究中的其他 DL 分类器相比,设计的分类器具有更高的分类性能。
根据 JDL 数据融合组过程模型,在 0、1、2 和 2+/3 级进行数据和信息融合。为了支持多传感器 IMINT 和 GMTI 融合和 3D 可视化,我们构建了阿拉巴马州莫比尔码头和周边地区的 3D 站点模型,该模型允许使用我们现有的图像挖掘工具进行搜索,并提供 COP 环境,可以在其中模拟和可视化场景。我们开发了用于模拟交通和编写单个车辆移动脚本的软件,以支持场景创建。我们探索了几个新概念来支持 2+/3 级的更高级别的信息融合。一种方法源于对动态脉冲信息网络及其同步形式的神经处理的洞察。这些网络可以以关系和学习到的关联的形式绑定数据和语义知识。我们证明了使用这些网络在移动数据集中学习动态城市场景中移动车辆之间的简单关联的可行性。第二种方法涉及从图像和/或文本数据中提取知识结构。我们开发了两种从数据集中的概念共现中发现分类法的机制。我们证明了这些方法对融合图像和文本语料库的有效性。最后一种方法利用神经启发机制从移动的跟踪实体中学习正常行为模型。这些模型随后被使用
图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
土地覆盖和土地利用的监测和评估在自然资源管理中至关重要。遥感数据和图像处理技术已广泛应用于城市和农村地区的土地描述和变化检测。关于土地利用或土地覆盖的详细信息是各个领域的宝贵信息来源,例如城市规划[30,43]、变化检测[17]、植被监测[2],甚至军事侦察。土地覆盖变化是环境变化[38,37]、森林覆盖动态[32]和退化[21]的指标,也是生物多样性监测的方法之一[31]。此类数据可用于研究景观中发生的过程,例如各种土地覆盖之间的流动 [ 16 ],从而可以研究城市化、森林砍伐、农业强度和其他人为变化的速度。
近年来,自主导航变得越来越流行。但是,大多数现有的方法在公路导航方面有效,并利用了主动传感器(例如LIDAR)。本文使用Passive传感器,特别是长波(LW)高光谱(HSI)的遍历性估计,重点介绍了自主越野导航。我们提出了一种方法,用于选择一部分高光谱带,该方法通过设计一个最小的传感器设计带选择模块,该模块设计一个最小的传感器,该模块设计了一个最小的传感器,该模块可以测量稀疏采样的光谱带,同时共同训练语义段网络网络,以进行遍历性估计。使用我们的LW HSI数据集在包括森林,沙漠,雪,池塘和开放式田野的各种越野场景中证明了我们方法的有效性。我们的数据集包括在各种天气条件下白天和夜间收集的图像,包括具有广泛障碍的具有挑战性的场景。使用我们的方法,我们学习了所有HSI频段中的一个小子集(2%),这些子频段可以在利用所有高光谱带时获得竞争性或更好的遍历性估计精度。仅使用5个频段,我们的方法能够实现平均类别的效果,该级别仅比使用完整的256波段HSI低1.3%,而仅比使用250频段HSI实现的效果仅比使用了0.1%,这证明了我们方法的成功。
Deeptrees项目提供了用于培训,微调和部署深度学习模型的工具,以使用德国的数字矫正图计划(DOP)以20 cm的分辨率从德国的数字矫正图计划(DOP)中使用公共访问的图像进行诸如Tree Crown分割,树状特征检测和树种分类。这些DOP图像是根据“ Amtliches popographis-kartographissches Informationssystems”(AKTIS)指南进行标准化的,以确保其长期使用的可靠性和一致性[2]。利用深层python软件包,我们成功地绘制了萨克森州(137,293,260棵树)和萨克森 - 安哈尔特(81,449,641棵树)的218,742,901棵树,展示了该工具在森林,Urban和乡村环境中的可伸缩性(图1)。这些数据集为市政当局和机构提供了宝贵的见解,以管理街道树木,监测城市绿化和评估森林健康,从而实现更明智的决策和可持续的管理实践。
摘要。宽场成像仪(WFI)是高能天体物理学的高级望远镜(雅典娜)的两种焦平面仪器之一,ESA的下一个大型X射线天文台计划于2030年代初发射。当前的基线光环轨道在L2左右,并且正在考虑太阳 - 地球系统的第二个Lagrangian点。对于潜在的光环轨道,辐射环境,太阳能和宇宙质子,电子和Heions都将影响仪器的性能。对仪器背景的进一步关键贡献是由未关注的宇宙硬X射线背景产生的。重要的是要了解和估算预期的工具背景并研究措施,例如设计模式或分析方法,这可以改善预期的背景水平,以达到具有挑战性的科学要求(<5×10 - 3计数∕ cm 2 ∕ cm 2 kev kev s s in 2至7 kev)。通过考虑到L2处的质子通量的新信息,可以改善Geant4中进行的WFI背景模拟。此外,已对WFI仪器的模拟模型及其在Geant4模拟中采用的周围环境进行了完善,以遵循WFI摄像机的技术开发。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jatis.7.3.034001]
运动图像(MI)允许设计自定进度的大脑 - 计算机界面(BCIS),该界面有可能提供直观且连续的相互作用。但是,具有三个以上命令的非侵入性MI基于BCI的实施仍然是一项困难的任务。首先,解码不同动作的MIS数量受到在相应来源之间保持足够间距的限制,因为近区域的脑电图(EEG)活性可能会加起来。第二,脑电图产生了大脑活动的相当嘈杂的图像,这会导致分类性能差。在这里,我们提出了一种解决方案,通过使用合并的MIS(即同时涉及2个或更多身体部位的错误)来解决可识别的运动活动的局限性。,我们提出了公共空间模式(CSP)算法的两种新的多标记用途,以优化信噪比,即MC2CMI和MC2SMI方法。,我们在8级的脑电图实验中记录了来自七个健康受试者的脑电图信号,包括剩余条件和所有可能的组合使用左手,右手和脚。所提出的多标记方法将原始的8级问题转换为一组三个二进制问题,以促进使用CSP算法。在MC2CMI方法的情况下,每个二进制问题组在一个类别中共同参与了三个选定的身体部位之一,而其余的不参与相同身体部位的MIS则在第二类中分组在一起。以这种方式,对于每个二进制问题,CSP算法都会产生特征,以确定特定的身体部分是否从事任务。最后,通过应用8级线性判别分析,将三组功能合并在一起,以预测用户意图。MC2SMI方法非常相似,唯一的区别是,在训练阶段考虑的任何组合MIS,这大大加速了校准时间。对于所有受试者,MC2CMI和MC2SMI方法的精度都比经典的配对(PW)和One-Vs.-All(OVA)方法更高。我们的结果表明,当正确调制大脑活动时,多标签方法代表了一个非常有趣的解决方案,可以增加命令数量,从而提供更好的相互作用。