Md. Fakruddin 1*、Musarrat Jahan Prima 2、Tanwy Chowdhury 1、Umme Tamanna Ferdous 3、Jinia Afroz 4、Md. Asaduzzaman Shishir 5 摘要背景:活性药物成分 (API) 是为药物提供治疗功效的基本成分,但传统的发现方法在创新性和多样性方面有限,阻碍了新型疗法的开发。这导致人们对微生物物种作为生物活性化合物来源的兴趣重新燃起,特别是当制药行业面临 API 采购停滞和传统提取方法带来的环境问题时。方法:本综述讨论了微生物(包括细菌、真菌、藻类和古菌)作为 API 来源的潜力。探索涉及分析微生物多样性、生物合成途径以及基因工程、合成生物学和宏基因组学等生物技术的进步。该综述还重点介绍了传统的基于培养的技术和当代高通量筛选方法,这些方法用于微生物 API 的发现。结果:研究结果表明,微生物具有复杂的代谢过程,能够产生多种生物活性化合物。遗传分析和
脊髓损伤(SCI)是一种严重的中枢神经系统疾病,全球性SCI的发生率达到每1,000,000人的900例。SCI导致排泄物中的瘫痪和严重的功能障碍,对患者的健康和生活质量构成了重大威胁(Ding等,2022)。在SCI的早期阶段,主要治疗方法涉及手术干预与高剂量甲基促进性酮(MP)结合使用。手术旨在扩大脊髓管以缓解脊髓压缩,而高剂量MP则旨在减少次级氧化应激和炎症,均导致神经保护作用(Tian等,2023)。然而,高剂量MP的副作用,例如感染,肺炎和股骨头坏死,不能忽略(Canseco等,2021)。此外,一项队列研究发现,MP没有为SCI患者提供预期的好处(Felleiter等,2012)。因此,SCI>后的常规使用高剂量MP
摘要:作为一种遗传了数千年的治疗工具,中医(TCM)在肿瘤疗法方面表现出优势。TCM的抗肿瘤活性成分不仅具有多目标治疗模式,而且与传统的化学治疗剂相比,还可以协同干扰肿瘤的生长。但是,大多数TCM的抗肿瘤活性成分具有差溶解度,高毒性和副作用的特征,这些特征通常在临床应用中受到限制。近年来,纳米系统提供TCM的抗肿瘤活性成分是一个有希望的领域。纳米递送系统的优点包括提高水溶性,靶向效率,增强体内稳定性和受控释放药物,这些药物可以实现较高的药物降低效率和生物利用度。根据对纳米载体的药物加载方法,纳米递送系统可以分为两种类型,包括物理封装的纳米板和化学耦合的药物交付平台。在这篇综述中,考虑了两种纳米递送方法,即物理封装和化学耦合,通常用于提供TCM的抗肿瘤活性成分,我们总结了不同类型的纳米递送系统的优势和局限性。同时,还讨论了纳米递送系统的临床应用和潜在毒性,以及这些纳米递送系统的未来开发和挑战,旨在为TCM在临床环境中的纳米递送系统的开发和实际应用奠定基础。
通过人工智能技术估算混凝土特性已被证明是建筑领域节省时间和成本的有效方法。超高性能混凝土 (UHPC) 的制造基于多种成分的组合,从而产生一种非常复杂的新鲜和硬化形式的复合材料。成分越多,可能的组合、特性和相对混合配比就越多,导致难以预测 UHPC 行为。本研究的主要目的是开发机器学习 (ML) 模型来预测 UHPC 的流动性和抗压强度。因此,当前的研究采用了复杂而有效的人工智能方法。为此,应用了一个名为决策树 (DT) 的单独 ML 模型和名为引导聚合 (BA) 和梯度提升 (GB) 的集成 ML 算法。还采用了诸如判定系数 (R2)、均方根误差 (RMSE) 和平均绝对误差 (MAE) 之类的统计分析来评估算法的性能。结论是,GB 方法可以适当地预测 UHPC 的流动性和抗压强度。DT 技术的 R 2 值较高,分别为抗压和流动性的 0.94 和 0.95,误差值较小,与其他 R 2 值较低的算法相比具有更高的精度。SHAP 分析表明,石灰石粉含量和固化时间分别对 UHPC 的流动性和抗压强度具有最高的 SHAP 值。本研究成果将有利于建筑行业的学者快速有效地确定 UHPC 的流动性和抗压强度。
任何药物开发项目的商业化阶段都是一个复杂的阶段。API 和其他成分的小批量生产流程必须迅速扩大规模,以进行商业化生产,同时又不能牺牲质量和效率。同时,必须重新考虑供应链,以确保大量成分能够在适当的环境条件下快速安全地运输,以保持其完整性。当相关 API 在运输过程中需要严格的零下温度控制时,这个过程就会变得更加复杂。
关于药物灭菌的文献有限。本研究旨在评估二氧化氮 (NO 2 ) 灭菌这一新兴技术对五种不同眼科活性药物成分(即盐酸四环素、阿昔洛韦、地塞米松、甲基泼尼松龙和曲安西龙)的效果。测试的 NO 2 过程浓度为 5、10 和 20 mg/L。应用温度为 21 ◦ C,相对湿度为 30 %。过程周期由两个脉冲组成,每个脉冲停留时间为 10 分钟。未处理样品作为空白。通过高效液相色谱联用紫外/可见光检测器评估灭菌方法的效果,用于定量分析降解产物和评估的眼科药物的相对含量。对于盐酸四环素和阿昔洛韦,随着 NO 2 浓度的增加,杂质含量有所增加。考虑到杂质必须符合欧洲药典 (Ph. Eur.) 规定的限度要求,估计最大允许 NO 2 浓度分别为 10 mg/L 和 2.5 mg/L。对于这两种化合物,经 20 mg/L NO 2 处理的样品与未处理样品相比,含量有显著差异。对于甲基强的松龙、地塞米松和曲安西龙,杂质符合 Ph. Eur. 对每种 NO 2 浓度的限度要求,相对含量没有显著影响。由于会导致严重降解,不建议用 NO 2 对盐酸四环素和阿昔洛韦进行灭菌。甲基强的松龙、地塞米松和曲安西龙的 NO 2 灭菌可应用于相关药品的无菌处理程序中。