该提案的摘要:我们的项目旨在为研究原子核,核反应和强烈相互作用的物质建立一个全面的综合框架。基于其高级多体和计算方法的互补专业知识,各种单元的协同努力将致力于研究在能量和大小的不同规模上发生的复杂核现象。现代化的从头算技术将被完善和应用,利用微观相互作用,这些相互作用源自核有效场理论。密度函数将使用AB的初始和/或现象结构约束开发,并应用于整个核图表中有限核的大量,光谱和衰减特性的计算,将研究集体模式,利用包括许多人体技术,包括超出平均场相关性。结构和反应理论的一致合并将为直接将理论计算与极端条件下的核系统的经验数据进行比较,还可以推导微观光学潜力。这些研究还将通过开发数学方法,基于量子计算的算法和机器学习技术来进行,专门针对研究核多体问题而进行。将特别注意与稀有同位素,深色可能检测以及电子相互作用的物理学有关的当前实验项目,包括中微子物理学和双β衰减。组合的天体物理和地面约束以及基于最先进模型的预测将采用对国家核方程的改进,多方面的理解。
各军种和各部门由于以下原因而无法或不愿开发的特性:因为在军种研发和采购预算的范围内无法接受风险;因为这些预算无法及时响应新出现的需求;因为新能力的可行性或军事价值在开始时并不明显,因此各军种拒绝对其进行投资;或者因为这些能力显然不属于任何一个军种的任务结构,因此没有迫切的、从一开始就支持开发和作战试验的来源。
摘要:分子动力学模拟已在不同的科学领域使用,以研究广泛的物理系统。但是,计算的准确性是基于描述原子相互作用的模型。特别是,从头算分子动力学(AIMD)具有密度功能理论(DFT)的准确性,因此仅限于小型系统和相对较短的模拟时间。在这种情况下,神经网络力场(NNFFS)具有重要作用,因为它们提供了一种规避这些警告的方法。在这项工作中,我们研究了在DFT级别设计的NNFFs,以描述液态水,重点介绍了所考虑的训练数据集的大小和质量。我们表明,与动态数据相比(例如扩散系数)相比,结构属性较少依赖于训练数据集的大小,并且良好的采样(选择训练过程的数据参考)可以以良好的精度导致一个小样本。■引言分子动力学模拟已在不同的科学领域中使用,以研究广泛的物理系统,例如液体的热力学特性以及接口和生物分子的物理化学方面。1-3它的成功依赖于许多因素,例如,分配的功能形式用于描述原子间相互作用和原子体内相互作用,参数化程序(获得潜在的参数)以及所采用的实验性或从头算的数据质量。11,因此,可转移性和准确性是这一研究领域的常见问题。5、7、124、5、7-10大多数经典电位都是物理和/或化学动机的,其中通常认为简单的分析功能形式,例如Lennard-Jones的电位。
据我们所知,本手稿是第一个全面的多体光发射框架,其中包括相干的三体电子 - 光子 - photon-Phonon散射,以预测来自单晶光子座的体积光电子的跨性能分布和平均横向能量(MT)。需要开发这种理论的需求源于缺乏研究,这些研究提供了对管理从单晶发出的光电子横向动量分布的基本基本过程的完整理解。例如,基于密度功能性电子质量的密度官能理论计算的初始谓词表明,PBTE的(111)表面会产生非常小的MTE(≤15meV),而我们的实验产生的MTES比这些预测大十到二十倍,并且还表现出比较低的光学发射阈值比预测较低的预测。本手稿中介绍的AB从头算框架正确地从我们的PBTE(111)中的测量值和在预测阈值下方观察到的光学范围中从我们的测量中重现了MTE的大小。我们的结果表明,在大部分材料和相干的多体电子散射过程中,两种光兴奋的状态都在忽略的初始预测中,它们在PBTE的光发射中起着非常重要的作用(111)。最后,从所吸取的教训中,我们建议一项程序,以快速计算对下一代超快电动局部应用的潜在单晶光阴极和X射线自由电子激光器的应用,这将使在凝聚力问题研究中实现可显着的进步。
摘要:在两个化学上相同但具有电子不同的过渡金属二进制(TMDS)之间的连接的超快载体动力学仍然很大程度上未知。在这里,我们采用时间分辨的光发射电子显微镜(TR-PEEM)来探测单层 - 型 - 次要人士(1L-ML)WSE 2连接的超快载体动力学。记录了连接的各个组件记录的tr-peem信号揭示了1L-和7L-WSE 2的子PS载体冷却动力学以及在1L-WSE 2上发生的几个PS激子 - 激子 - 激子 - 激子 - 激子。,我们观察到超高界面孔(H)在约0.2 PS时尺度上从1L--至7L-WSE 2转移。在7l-wse 2中,由于载体重组的重组在约100 ps的时间尺度上,其产生的过量H密度衰减。让人联想到耗尽区域的行为,TREEM图像揭示了H密度在7L-WSE 2界面上的积累,衰减长度约为0.60±0.17μm。这些电荷转移和重组动态与从头量量子动力学一致。计算的轨道密度揭示了电荷转移是从延伸到1L和ML区域的基底平面到位于ML区域上的上层平面。这种电荷转移模式与分层材料的化学均匀连接相关,并且构成了另一种载流子停电途径,应在对其ML旁边发现的1L-TMDS的研究中考虑,这是剥落样品中常见的情况。关键字:过渡金属二分法,外侧连接,界面电荷转移,时间分辨的光发射电子显微镜,超快光谱,非绝热的摘要分子动力学L
分子在强或超长的光耦合下构成了一种有趣的途径,以改变化学结构,性质和反应性。对此类系统的严格理论处理需要在相同的量子机械基础上处理物质和光子自由度。在分子电子强或超长耦合到一个或几个分子的状态下,希望使用量子量子化学的工具来处理分子电子度自由度,从而产生一种方法,该方法被称为Ab Initio量子量子量子量动力量动力(AI-QED),在该量子量子量子量子(AI-QED)中,该方法是光子的自由度。在这封信中,我们分析了AI-AQED的两种互补方法:(1)参数化的CQED(PQED),这是一种两步的方法,其中使用现有的电子结构理论计算了自由度,从而实现了严格的AI-QED Hamiltonians在许多基础上的构建,以多种电子方式来构建(2)cqsent efersonics selfsissics cqQQQQQQQQQQQQQQQQQQQQQQQQQESENT cq QQQQQQQQESEND cq QQQQQQESENT SERVENSINS(2)CQQQQQQQQQQQQESENT(2)CQQQQQQQQQQESENT(2)结构方法被推广为包括电子自由度和光子自由度之间的耦合。尽管这些方法在它们的确切限制上是等效的,但我们确定了在PQED方法中出现的两体偶极子自动能源运算符的投影与SCQED方法中的确切对应物之间的差异。我们提供了一个理论上的论点,即这种差异仅在完整的轨道基础和完整的多电子基础的限制下解决。我们提出的数值结果突出了这种差异及其在简单分子系统中的分辨率,在那里可以同时接近这两个完整的基础限制。此外,我们检查并比较了将每种方法融合到完整轨道和多电子基础所需的计算成本的实际问题。
纳米结构可能具有挑战性,因此计算机模拟在提供见解方面可以发挥重要作用。在本次演讲中,我将首先介绍动力学驱动生长中的一维、二维和三维 Ehrlich-Schwoebel (ES) 屏障。在这个框架内,我将展示如何有效地控制岛形、岛不稳定性以及薄膜粗糙度。此外,我将讨论一个新概念:金属表面上真正的向上吸附原子扩散,这超出了传统的 Ehrlich-Schwoebel (ES) 屏障模型。该过程提供了新的迹象,即如何使用从头算动力学蒙特卡罗模拟揭示原子尺度演化机制的一些构建规则。
我们将基于多体扰动理论和累积膨胀的AB从头算计算与角度分辨光发射光谱(ARPES)相结合,以量化高度掺杂的半导体过渡金属二核基因1 T -HFS中的电子样本相互作用。arpes揭示了传导带底部的准颗粒激发附近的卫星光谱特征的出现,这表明偶联与200 MeV的特征能量的玻体激发偶联。我们对光发射光谱函数的第一个原理计算表明,这些特征可以归因于电子耦合到载体等离子(掺杂诱导的集体电荷密度频率)。我们进一步表明,在表面上减少筛选会增强电子 - 种类的相互作用,并主要负责等离激子极性子的出现。
核酸,蛋白质和文献的数据库(约6小时)。详尽的启发式方法,用于对齐和搜索数据库中的生物序列(约6小时)。替代矩阵。多个对齐,配置文件和HMM。功能基序。转录组学简介(大约6小时)。基因组浏览器。基因和基因组的功能注释。蛋白质结构的比较和分类。次级和第三级结构的预测:同源性建模,螺纹,从头算法,基于AI的方法(大约8小时)。相互作用,途径,遗传疾病和SNP的数据库。生物学本体论。集成方法。蛋白质相互作用网络(约8小时)。实践会议将持续24小时,并将涵盖以前讲座中讨论的主题。
图1:富含硼的六角形面孔的热力学的从头开始。(a)BOB 2表面的表面相图,其额外表面硼的覆盖范围与B大典型的全局优化采样的覆盖范围不同。虚线标记了与B富集相关的化学潜力。(b)在与B富集相关的化学势方面,采样表面相的大规范自由能。(c)三个表面相(B 0,B 1/9和B 1/3)结构的顶部和前视图,可以通过硼 - 富集来制备。额外的硼原子以黄色圆圈标记。原子的颜色代码:mo - 蓝色,b - 粉红色。