[1] Michael Ahn、Anthony Brohan、Noah Brown、Yevgen Chebotar、Omar Cortes、Byron David、Chelsea Finn、Keerthana Gopalakrishnan、Karol Hausman、Alex Herzog 等人。2022 年。尽我所能,不要照我说的做:为机器人可供性奠定语言基础。arXiv 预印本 arXiv:2204.01691 (2022)。[2] Chris Baker、Rebecca Saxe 和 Joshua Tenenbaum。2011 年。贝叶斯心智理论:建模联合信念-愿望归因。在认知科学学会年会论文集,第 33 卷。[3] Chris L Baker、Noah D Goodman 和 Joshua B Tenenbaum。2008 年。基于理论的社会目标推理。在认知科学学会第三十届年会论文集。 Citeseer,1447–1452。[4] Chris L Baker 和 Joshua B Tenenbaum。2014 年。使用贝叶斯心理理论对人类计划识别进行建模。计划、活动和意图识别:理论与实践 7 (2014),177–204。[5] Andreea Bobu、Marius Wiggert、Claire Tomlin 和 Anca D Dragan。2021 年。特征扩展奖励学习:重新思考人类输入。在 2021 年 ACM/IEEE 人机交互国际会议论文集上。216–224。[6] Andreea Bobu、Marius Wiggert、Claire Tomlin 和 Anca D Dragan。2022 年。通过学习特征在奖励学习中诱导结构。国际机器人研究杂志 (2022),02783649221078031。[7] Mustafa Mert Çelikok、Tomi Peltola、Pedram Daee 和 Samuel Kaski。2019 年。具有心智理论的交互式人工智能。arXiv 预印本 arXiv:1912.05284 (2019)。[8] Aakanksha Chowdhery、Sharan Narang、Jacob Devlin、Maarten Bosma、Gaurav Mishra、Adam Roberts、Paul Barham、Hyung Won Chung、Charles Sutton、Sebastian Gehrmann 等人。2022 年。Palm:使用路径扩展语言建模。arXiv 预印本 arXiv:2204.02311 (2022)。[9] Harmen De Weerd、Rineke Verbrugge 和 Bart Verheij。 2013. 了解她知道你知道的事情有多大帮助?一项基于代理的模拟研究。人工智能 199 (2013),67–92。[10] Jacob Devlin、Ming-Wei Chang、Kenton Lee 和 Kristina Toutanova。2018. Bert:用于语言理解的深度双向变压器的预训练。arXiv 预印本 arXiv:1810.04805 (2018)。[11] Prafulla Dhariwal 和 Alexander Nichol。2021. 扩散模型在图像合成方面击败了 gans。神经信息处理系统进展 34 (2021),8780–8794。[12] Prashant Doshi、Xia Qu、Adam Goodie 和 Diana Young。2010. 使用经验主义交互式 POMDP 对人类的递归推理进行建模。在第九届自主智能体和多智能体系统国际会议论文集:第 1 卷-第 1 卷。1223–1230。[13] 段佳飞、余志强、谭辉、朱宏远和陈志东。2022 年。具身人工智能调查:从模拟器到研究任务。IEEE 计算智能新兴主题汇刊 (2022 年)。[14] 段佳飞、余志强、谭辉、易立和陈志东。2022 年。BOSS:对象上下文场景中人类信念预测的基准。arXiv 预印本 arXiv:2206.10665 (2022 年)。[15] David Engel、Anita Woolley、Lisa Jing、Christopher Chabris 和 Thomas Malone。2014 年。从眼睛读懂心思还是从字里行间读懂心思?心智理论在线上和面对面时同样能预测集体智慧。PloS one 9 (12 2014),e115212。https://doi.org/10.1371/journal.pone.0115212 [16] Dylan Hadfield-Menell、Stuart J Russell、Pieter Abbeel 和 Anca Dragan。2016 年。合作逆强化学习。神经信息处理系统的进展 29 (2016)。[17] Yanlin Han 和 Piotr Gmytrasiewicz。2018 年。使用交互式 POMDP 在多智能体环境中学习他人的意向模型。神经信息处理系统的进展 31 (2018)。 [18] 何开明、张翔宇、任少卿和孙健。2016 年。深度残差学习在图像识别中的应用。IEEE 计算机视觉与模式识别会议论文集。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。2020 年。去噪扩散概率模型。神经信息处理系统进展 33(2020 年),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020 年。人工智能与对未来的担忧:挪威案例研究。在《分布式、环境和普适交互》中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。 [21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。2016 年。协调合作或竞争:社交互动中的抽象目标和共同意图。《认知科学》。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015 年。深度学习。《自然》521,7553(2015 年),436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的更大信任?个体差异在用户对内容审核反应中的作用。新媒体与社会 0, 0 (0), 14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。[25] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018 年。机器心智理论。国际机器学习会议。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本到图像生成。国际机器学习会议。PMLR,8821–8831。org/10.1371/journal.pone.0115212 [16] Dylan Hadfield-Menell、Stuart J Russell、Pieter Abbeel 和 Anca Dragan。2016 年。合作式逆强化学习。神经信息处理系统进展 29(2016 年)。[17] Yanlin Han 和 Piotr Gmytrasiewicz。2018 年。使用交互式 POMDP 在多智能体环境中学习他人的意向模型。神经信息处理系统进展 31(2018 年)。[18] Kaiming He、Xiangyu Zhang、Shaoqing Ren 和 Jian Sun。2016 年。用于图像识别的深度残差学习。IEEE 计算机视觉与模式识别会议论文集。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。 2020. 去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020. 人工智能与对未来的担忧:挪威案例研究。在分布式、环境和普适交互中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。2016. 协调合作或竞争:社交互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。 nature 521, 7553 (2015), 436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的信任度更高?个体差异在用户对内容审核的反应中的作用。新媒体与社会 0, 0 (0), 14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978),515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。在国际机器学习会议上。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021. 零样本文本到图像生成。在国际机器学习会议上。PMLR,8821–8831。org/10.1371/journal.pone.0115212 [16] Dylan Hadfield-Menell、Stuart J Russell、Pieter Abbeel 和 Anca Dragan。2016 年。合作式逆强化学习。神经信息处理系统进展 29(2016 年)。[17] Yanlin Han 和 Piotr Gmytrasiewicz。2018 年。使用交互式 POMDP 在多智能体环境中学习他人的意向模型。神经信息处理系统进展 31(2018 年)。[18] Kaiming He、Xiangyu Zhang、Shaoqing Ren 和 Jian Sun。2016 年。用于图像识别的深度残差学习。IEEE 计算机视觉与模式识别会议论文集。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。 2020. 去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020. 人工智能与对未来的担忧:挪威案例研究。在分布式、环境和普适交互中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。2016. 协调合作或竞争:社交互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。 nature 521, 7553 (2015), 436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的信任度更高?个体差异在用户对内容审核的反应中的作用。新媒体与社会 0, 0 (0), 14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978),515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。在国际机器学习会议上。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021. 零样本文本到图像生成。在国际机器学习会议上。PMLR,8821–8831。在 IEEE 计算机视觉与模式识别会议论文集上。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。2020 年。去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020 年。人工智能与对未来的担忧:挪威案例研究。在《分布式、环境和普适交互》中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。 2016. 协调合作或竞争:社会互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。自然 521,7553(2015),436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的更大信任?个体差异在用户对内容审核反应中的作用。新媒体与社会 0, 0 (0),14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。国际机器学习会议。PMLR,4218–4227。 [27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本转图像生成。国际机器学习会议。PMLR,8821–8831。在 IEEE 计算机视觉与模式识别会议论文集上。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。2020 年。去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020 年。人工智能与对未来的担忧:挪威案例研究。在《分布式、环境和普适交互》中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。 2016. 协调合作或竞争:社会互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。自然 521,7553(2015),436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的更大信任?个体差异在用户对内容审核反应中的作用。新媒体与社会 0, 0 (0),14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。国际机器学习会议。PMLR,4218–4227。 [27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本转图像生成。国际机器学习会议。PMLR,8821–8831。//doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 [25] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018 年。机器心智理论。国际机器学习会议。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本到图像生成。国际机器学习会议。PMLR,8821–8831。//doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 [25] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018 年。机器心智理论。国际机器学习会议。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本到图像生成。国际机器学习会议。PMLR,8821–8831。
摘要 — 本文介绍了一种用于学习困难儿童的学业参与和注意力水平监测的神经认知训练新方法的初步结果。机器学习 (ML) 技术和脑机接口 (BCI) 用于开发一种交互式人工智能游戏,用于教育治疗,以监测儿童在特定认知任务期间注意力水平的进展。我们的方法利用脑电图 (EEG) 采集儿童脑电波数据,通过模型校准对注意力水平进行分类。实时脑电波模式是我们游戏界面的输入,用于监测注意力水平。当注意力下降时,教育游戏可以通过改变训练的挑战或向用户提供一些新的视觉或听觉刺激来个性化用户,以减少注意力损失。为了了解注意力水平模式,我们收集了巴西各所小学患有智力障碍(如自闭症谱系障碍和注意力缺陷多动障碍)儿童的脑电波数据。初步结果表明,我们成功地对使用各种经典 ML 技术获得的脑电波模式进行了基准测试(96%)。通过自动分类脑电波获得的结果对于进一步开发我们的完整方法至关重要。问卷调查中对基于人工智能的游戏以及训练期间的参与度和积极性都给出了积极的反馈。
摘要。人工智能是一种技术,可以设计计算机来做人类通常做的事情。然后,从教育的角度来看,人工智能已经在多项研究中被披露,这些研究已知对学生的学习过程有重大影响。智能导师的应用也已在多项教育活动中开展。本研究的目的是设计一种使用人工智能和个性化学习的学习应用程序,以改善学生的学习体验。在本研究中,使用的方法是 MDLC(多媒体开发生命周期)。该方法可用于制作动画、学习视频和基于人工智能的多媒体应用程序。在问卷调查和验证的结果中,获得的数据无论是从验证者还是从受访者那里都得到了令人满意的结果,因此可以得出结论,这种基于聊天机器人的学习媒体可以用作电子商务学习的支持工具。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管具有大量优势,但此类解决方案在操作使用方面受到严重限制,特别是几乎不可能实现无需注视的交互,而且在湍流条件下使用触摸屏非常复杂。我们通过引入一种形状可变的触摸屏来研究物理特性对克服这些弱点的贡献,这种触摸屏提供了可供用户手部休息的褶皱。在模拟器中,在湍流和脑力负荷各不相同的驾驶条件下,对该表面进行了评估。结果表明,褶皱有助于通过稳定手臂和手部来减少体力消耗。这种物理特性还与驾驶任务中的更好表现以及对飞机系统状态的更好态势感知有关,这肯定是因为折叠提供的形状具有更好的视觉特性(显著性),使得对它们的监控在注意力资源方面成本更低。
3.2.2 警告、注意和说明。技术信息应补充警告、注意和说明,以便:引起用户注意可能导致受伤或设备损坏的做法、程序和条件;警告用户不要执行某些危险操作;或要求采取特定步骤以安全执行程序。设备操作和维护规定的程序应符合《职业安全与健康法》(OSHA)、公法 91-596 和行政命令 11807 制定的安全标准。警告和注意中包含的信息应符合 MIL-STD-38784 附录 A 的要求,只要它不与本规范相冲突。当无法避免使用或接触危险化学品、环境中的不利健康因素或危险设备时,应包括适当的警告和注意。警告、注意、说明或其他要强调的信息应:
Ron Carson 博士是西雅图太平洋大学工程学副教授、华盛顿大学工业与系统工程学助理教授、国际系统工程理事会会员和认证专家系统工程专家 (ESEP®)。他在波音公司工作 27 年后,于 2015 年以系统工程技术研究员的身份退休。他撰写了大量有关需求分析和系统工程测量的文章,并且是众多行业系统工程培训课程的开发者。他已获得六项卫星通信美国专利和两项“结构化需求生成和评估”专利。他目前的兴趣是将可持续性考虑因素定量地纳入系统工程方法和教育中。Carson 博士拥有华盛顿大学核工程(实验等离子体物理学)博士学位和加州理工学院应用物理学学士学位。
图 4.7 偏好设置................................................................................................................ 65
这项工作可根据创意共享归因4.0国际许可提供。通过使用这项工作,您可以接受该许可条款的约束(https://creativecommons.org/licenses/4.0/)。归因 - 您必须引用工作。翻译 - 您必须引用原始作品,确定对原始文本的更改,并添加以下文本:如果原始作品和翻译之间有任何差异,则仅应将原始作品的文本视为有效。改编 - 您必须引用原始作品并添加以下文本:这是经合组织对原始作品的改编。本适应中表达的意见和论点不应报告为代表经合组织或其成员国的官方观点。第三方材料 - 许可证不适用于工作中的第三方材料。如果使用这种材料,则负责获得第三方的许可以及任何侵权索赔。未经明确许可,您不得使用经合组织徽标,视觉标识或封面图像,也不得建议经合组织认可您对工作的使用。
作为一种模型生物,果蝇在帮助我们理解大脑如何控制复杂行为方面具有独特的贡献。它不仅具有复杂的适应性行为,而且还具有独特强大的遗传工具包、日益完整的中枢神经系统密集连接组图谱和快速增长的细胞类型转录组谱。但这也带来了一个挑战:鉴于可用数据量巨大,研究人员如何查找、访问、整合和再利用 (FAIR) 相关数据,以便开发电路的综合解剖和分子图像、为假设生成提供信息并找到用于测试这些假设的实验试剂?虚拟蝇脑 (virtual fly brain.org) 网络应用程序和 API 为这个问题提供了解决方案,它使用 FAIR 原理整合神经元和大脑区域的 3D 图像、连接组学、转录组学和试剂表达数据,涵盖幼虫和成虫的整个中枢神经系统。用户可以通过文本搜索、单击 3D 图像、按图像搜索和按类型(例如多巴胺能神经元)或属性(例如触角叶中的突触输入)查询,按名称、位置或连接性搜索神经元、神经解剖学和试剂。返回的结果包括可在链接的 2D 和 3D 浏览器中浏览或根据开放许可下载的交叉注册 3D 图像,以及从文献中整理的细胞类型和区域的详细描述。这些解决方案具有可扩展性,可以涵盖脊椎动物中类似的图谱和数据集成挑战。