- 由Airesearch构建,由Lewis测试 - 与BRU的主要区别:较低的功率,箔轴承,内定子冷却 - 可互换的超合金和耐火涡轮机制造•导致1.3 kW Brayton Isotope Power System(BIPS)开发(BIPS)开发(DOE)
关键字:三叠纪,元素地球化,稳定的同位素地球化学,地质学,生物地层学,生物地质学循环,气候变化研究主题:极地研究,气候和环境科学,地球历史和地球生物学的地球化学和动态,地球历史和地球生物学,主管: (https://www.ku.ac.ae/college-people/aisha-al-suwaidi)4。Title: Evolution of silicate weathering on land as a marker for Late Triassic to Early Jurassic climate dynamics: A record from the Polar Regions Keywords: Silicate weathering, climate dynamics, clay mineralogy, clay mineral stable isotope geochemistry, elemental geochemistry, stable isotope geochemistry, Triassic, Polar Region Research Theme: Earth History and Geobiology, Polar Research, Climate and环境科学,行星科学与天体生物学主要主管:Frantz Gerard Ossa Ossa博士(https://www.ku.ac.ac.ae/college-people/frantz-gerard-ossa-ossa-ossa-ossa-ossa)5。标题:破译地球的早期地幔演变
Ondera, Thomas 建立 ASU 同位素研究基础设施和专业知识,以推进同位素生产和基础研究能力 Alcorn State University Lorman MS 39096-7500
如何处理四个4 M深度同位素深度概况的采样样本。两个剖面分别位于一个旧葡萄园中,分别有和没有草种在行之间。其他两个轮廓分别位于一个年轻的2.5岁的葡萄园中,分别有和没有草种在两排之间。分析土壤样品的硝酸盐浓度和稳定的同位素组成。来自附近的沉淀同位素采样和基本气象数据已有数年。同位素深度轮廓用于校准四个不同位置的土壤物理模型Hydrus-1D。气象数据和沉淀同位素用作输入数据,而描述水流和沿轮廓的传输的土壤液压参数是通过反向建模确定的,通过优化同位素模拟对观测值的拟合。然后使用特定地点的校准模型来追踪水和硝酸盐随时间和土壤深度的命运。
•用高功率电子光束生产放射性同位素•诊断和治疗同位素•Niowave同位素计划•商业SRF ACCELERATOR技术•SRF腔和冷冻模块•液体氦冰箱•微波化•微波化•微波化功率•高电动型电源型型型iSOP线•ISOP LINS型•ISOP范围•ISOP型•ISOP型设计•
– Successfully re-established domestic production of Pu-238 with about 0.9 kg of heat-source oxide produced to date with an average production goal of 1.5 kg/year by 2026 – Increased number of isotope production campaigns and expanded production from one to two DOE research reactors – Accelerated automated target fabrication, equipment modernization, and material handling capabilities across DOE • Stabilized fuel manufacturing with predictable schedule
同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高约 10%。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高出 150%。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,通过将声子传输到原生非晶态 SiO 2 壳层来实现相关。这项工作发现了迄今为止报道的所有材料中室温下 κ 的最强同位素效应,并启发了同位素富集半导体在微电子领域的潜在应用。
• 系统建模、过程控制和仿真 – 定义模型以推进和优化系统设计、监控操作、控制过程并模拟正常和非正常运行期间的性能 • 氚库存减少和改进工艺技术 – 改进氚处理以减少所需库存并降低放射源期限。这包括开发直接内部回收等先进设计 • 同位素供应、氚增殖和氚提取 – 定义氚/同位素供应源和处理,确保可以实现氚增殖率,并最大限度地减少自留库存
经典计算机的历史是从使用真空管的初始概念验证,到最终完善的现代硅基架构而发展起来的。现在,量子计算机正从概念验证转向实用设计,并且正处于扩展到越来越多相干、连接良好的量子比特的阶段。自从 Cirac 和 Zoller 证明了一种将任意幺正运算应用于离子线性阵列的可行方法 [1] 以来,离子量子计算机一直是量子计算发展的有力竞争者。最近,霍尼韦尔 [2] 和 IonQ [3] 推出了两台使用镱的工业量子计算机。这些计算机采用镱同位素离子 171 Yb + 最外层 S 壳层的价电子来编码量子比特的状态。有两种相互竞争的架构:MUSIQC 和 QCCD [4,5]。为什么要使用稀土元素呢? [Xe] 4f 14 6s 1 电子构型之所以具有吸引力,是因为它通过使用 P 轨道实现了超精细到光学的耦合。此外,它相当容易实现。有几种元素和同位素可能适合这种构型。为什么特别选择 171 Yb +?选择这种同位素的动机是需要核自旋 1/2、观测稳定性和一阶塞曼不敏感时钟状态。可以考虑放射性同位素,但同位素必须足够稳定和普遍,以便与典型的金属源隔离。此外,我们要求电离能合理,电离原子带正电。171 Yb + 是唯一满足这些限制的同位素。