(在非进攻顺序中)和(u J)的正征值的顺序是特征向量的相应正交系统,该问题的解决方案由光谱投影仪P J = J =J∈Ju J j u j u j和Index Set j给出。在统计应用中,X的分布及其协方差结构尚不清楚。相反,人们经常观察样本x 1,。。。,x的n独立副本的x n,现在的问题是要找到p j的估计器。PCA的想法是通过第一次通过经验协方差操作员估算的问题来解决这个问题2.2.1,用于精确定义)。因此,一个关键问题是控制和量化P J和P J之间的距离。在过去的几十年中,围绕这个问题的大量文献已经发展,例如Fan等。 [13],Johnstoneand Paul [24],Horváth和Kokoszka [18],Scholkopf和Smola [45],Jolliffe [23] [23]进行一些概述。 一种研究ˆ P J和P J之间距离的传统方法是控制一项规范,以测量经验协方差算子和人口协方差操作员之间的距离。 一旦建立了这种情况,就可以通过诸如戴维斯 - 卡汉(Davis -Kahan)不平等之类的不平等现象来推导ˆ p j -p j的界限,例如,请参见hsing and eubank [16],Yu等。 [52],以及Cai和Zhang [9],Jirak和Wahl [25],以获取一些最新结果和扩展。 [30]。 但是,如Naumov等人所述。Fan等。[13],Johnstoneand Paul [24],Horváth和Kokoszka [18],Scholkopf和Smola [45],Jolliffe [23] [23]进行一些概述。一种研究ˆ P J和P J之间距离的传统方法是控制一项规范,以测量经验协方差算子和人口协方差操作员之间的距离。一旦建立了这种情况,就可以通过诸如戴维斯 - 卡汉(Davis -Kahan)不平等之类的不平等现象来推导ˆ p j -p j的界限,例如,请参见hsing and eubank [16],Yu等。[52],以及Cai和Zhang [9],Jirak和Wahl [25],以获取一些最新结果和扩展。[30]。但是,如Naumov等人所述。但是,如Naumov等人所述。然而,对于更精确的统计分析,诸如限制定理或引导程序近似之类的爆发结果更为可取。Koltchinskii和Lounici [27],Koltchinskii和Lounici [28,29](及相关)的最新作品在这里特别感兴趣。除其他外,它们提供了预期的平方hilbert – schmidt距离e∥ˆ p j-p j-p j∥22和berry – esseen类型界限的分布分布近似值的精确的,非反对分析的分布分析。在Löfliper[32],Koltchinskii [31],Koltchinskii等人中讨论了一些扩展问题和相关问题。[39],这些结果有一些局限性,并且自举近似可能更可取和灵活。再次,在纯粹的高斯设置中,Naumov等人。[39]成功地展示了一个自举程序,并带有伴随的界限,以减轻某些问题以限制出于推论目的而限制分布。让我们指出,从数学角度来看,Koltchinskii和Lounici [29]和Naumov等人的结果。[39]有些互补。更确切地说,在Naumov等人中,定理2.1的引导程序近似的结合。[39]失败(意味着它仅产生琐碎的性),而Koltchinskii和lounici的定理6中的绑定[29]却没有,反之亦然,请参见Sect。5进行一些示例和进一步的讨论。[7],Yao和Lopes [51],Lopes等。[33],江和拜[20],刘等。[34]。也广泛研究了特征值和相关数量的极限定理和引导近似值的主题,例如,请参见Cai等人。这项工作的目的是为两个分布提供定量界限(例如clts)和bootstrap近似,在矩和光谱衰减方面,情况相对温和。关于后者,我们的结果表现出一种不变性,在很大程度上不受多项式,指数(甚至更快)衰减的影响。