首尔国立大学,韩国首尔,3月。2023-目前的数据科学候选人,顾问:Min -Hwan OH OH国立国立大学,韩国首尔,2023年2月2月数据科学,顾问:韩国首尔的Min-Hwan Oh Yonsei University,2016年2月B.S. 工业工程数据科学,顾问:韩国首尔的Min-Hwan Oh Yonsei University,2016年2月B.S.工业工程
• 南加州大学 (USC) – 维特比工程学院,美国加利福尼亚州洛杉矶 – 博士学位。 (2009 年 8 月 - 2014 年 8 月) 计算机科学,Thomas Lord 计算机科学系 - (导师:Andreas F. Molisch 教授 (IEEE 院士),Ming Hsieh 电气与计算机工程系) - 研究助理,通信、信息、学习和量子 (CILQ) 组 - 计算机科学硕士 (2014 年 5 月),高性能计算和模拟专业 - 电气工程硕士 (2012 年 5 月) • 高丽大学 - 信息学院,首尔,韩国 - 计算机科学与工程硕士 (2004 年 3 月 - 2006 年 2 月) - (导师:Wonjun Lee 教授 (IEEE 院士),网络防御和未来网络中心系) - 计算机科学与工程学士 (1999 年 3 月 - 2004 年 2 月)
[1] Jaesik Park Minghhyuk Shin,Minghyuk Shin,“使用大型文本对图像模型作为分类的数据源”,第35届有关图像处理和图像理解的研讨会(IPIU),2023。
3.Shin, M. H., Park, H., Kim, S., Oh, E. J. , Jeong, D., Florencia, C., Kim, K. H., Jin, Y. S., 和 Kim, S. R. 2021.糖酵解基因失活引起的转录组变化及其对酿酒酵母戊糖代谢的优势。生物工程和生物技术前沿 9, 654177。4.Jeong, D., Park, H., Jang, B. K., Ju, Y., Shin, M. H., Oh, E. J. , Lee, E. J., and Kim, S. R. 2021。柑橘皮废料生物增值转化为燃料和化学品的最新进展。生物资源技术 323, 124603。5.Lacerda, M. P., Oh, E. J. 和 Eckert, C. 2020。模型系统酿酒酵母与新兴非模型酵母在生物燃料生产中的比较。Life 10(11), 299.6.Jeong, D*., Oh, E.J.* , Ko, J. K., Nam, J. O., Park, H. S., Jin, Y. S., Lee, E. J., and Kim, S. R. 2020.酿酒酵母中木糖分解代谢途径异源表达的代谢工程考虑因素。PLoS ONE 15(7), e0236294。(* 同等贡献) 7.Oh, E. J. , Liu, R., Liang, L., Freed, E. F., Eckert, C. A., 和 Gill, R. T. 2020.利用酵母表面展示平台进行抗体片段的多重进化。ACS Synthetic Biology 9(8), 2197-2202。8.Choudhury, A., Fankhauser, R. G., Freed, E. F., Oh, E. J. , Morgenthaler, A.B., Bassalo, M. C., Copley, S. D., Kaar, J. L., 和 Gill, R. T. 2020.大肠杆菌中 Cas9 介导重组工程高效编辑的决定因素。ACS Synthetic Biology 9(5), 1083-1099。9.Park, H., Jeong, D., Shin, M. H., Kwak, S., Oh, E. J. , Ko, J. K., 和 Kim, S. R. 2020.酿酒酵母在将热液预处理的木质纤维素生物质转化为乙醇的过程中对木糖的利用。应用微生物学和生物技术 104, 3245-3252。10.Oh, E. J. 和 Jin, Y. S. 2020.酿酒酵母工程改造以实现高效
通过石墨烯进行远程外延相互作用的实验证据 Celesta S. Chang 1,2,† 、Ki Seok Kim 1,2,† 、Bo-In Park 1,2,† 、Joonghoon Choi 3,4,† 、Hyunseok Kim 1 、Junsek Jeong 1 、Matthew Barone 5 、Nicholas Parker 5 、Sangho Lee 1 、Kuangye Lu 1 、Junmin Suh 1 、Jekyung Kim 1 、Doyoon Lee 1 、Ne Myo Han 1 、Mingi Moon 6 、Yun Seog Lee 6 、Dong-Hwan Kim 7,8 、Darrell G. Schlom 5,*、Young Joon Hong 3,4,*、和 Jeehwan Kim 1,2,6,9,* 1 麻省理工学院机械工程系,美国马萨诸塞州剑桥 02139,2 麻省理工学院电子研究实验室,美国马萨诸塞州剑桥 02139 3 世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 4 GRI-TPC 国际研究中心和世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 5 康奈尔大学材料科学与工程系,纽约州伊萨卡,14850,美国 6 首尔国立大学机械工程系,首尔,韩国 7 成均馆大学(SKKU)化学工程学院,水原 16419,韩国 8 成均馆大学(SKKU)生物医学融合研究所(BICS),水原 16419,韩国 9 麻省理工学院材料科学与工程系,马萨诸塞州剑桥 02139,美国 † 这些作者的贡献相同。 * 通讯至 jeehwan@mit.edu、yjhong@sejong.ac.kr、schlom@cornell.edu ORCID ID:Celesta S. Chang (0000-0001-7623-950X)、Ki Seok Kim (0000-0002-7958-4058)、Bo-In Park (0000-0002-9084-3516)、崔仲勋 (0000-0002-2810-2784)、郑俊石 (0000-0003-2450-0248)、金贤锡 (0000-0003-3091-8413)、李尚浩(0000-0003-4164-1827),路匡业(0000-0002-2992-5723)、Jun Min Suh(0000-0001-8506-0739)、Do Yoon Lee(0000-0003-4355- 8146)、Ne Myo Han(0000-0001-9389-7141)、Yun Seog Lee(0000-0002-2289-109X)、Dong-Hwan Kim(0000-0002-2753-0955)、Darrell Schlom(0000-0003-2493-6113)、Young Joon Hong(0000- 0002-1831-8004)、Jeehwan Kim(0000-0002-1547-0967)摘要远程外延的概念利用衬底的衰减电位二维范德华层覆盖在基底表面,这使得吸附原子能够进行远程相互作用,从而遵循基底的原子排列。然而,必须仔细定义生长模式,因为二维材料中的缺陷可以允许从基底直接外延,这可能会进一步诱导横向过度生长形成外延层。在这里,我们展示了一种只能在远程外延中观察到的独特趋势,与其他基于二维的外延方法不同。我们在图案化石墨烯上生长 BaTiO 3,以显示一个反例,其中基于针孔的外延无法形成连续的外延层。通过观察在没有单个针孔的石墨烯上生长的纳米级成核位点,我们在原子尺度上直观地证实了远程相互作用。从宏观上看,GaN微晶阵列的密度变化取决于衬底的离子性和石墨烯层数,这也证实了远程外延机制。