该项目首次采用氧化物分子束外延 (MBE) 来生长 KTaO ₃ (KTO) 薄膜。早期生长使用 (100) SrTiO ₃ (STO) 基材进行,以尝试微调生长参数。此外,还使用了通过炉加热的 TaO ₂ 亚氧化物源和通过电子束加热的 Ta 源,并分析和比较了它们各自的薄膜。通过反射高能电子衍射 (RHEED) 进行原位监测,以及通过原子力显微镜 (AFM) 和 X 射线衍射 (XRD) 进行生长后表征,可以在整个项目中进行表面和晶体分析。来自亚氧化物和电子束加热 Ta 源的薄膜显示出相似的晶体质量,然而,在亚氧化物生长的 KTO 表面上发现更高浓度的氧化物杂质。成功生长 KTO 后,使用稀土钪酸盐 (110) 衬底 GdScO ₃ (GSO) 和 DyScO ₃ (DSO),因为它们与 KTO 的“立方体对伪立方体”界面将分别产生理论上 0.55% 和 0.93% 的压缩应变。通过逆空间映射 (RSM),GSO 衬底在 KTO 薄膜上显示出相称的应变,而 DSO 衬底仅显示部分应变。总体而言,使用 MBE 生长 KTO 可实现高结晶质量,为 KTO 薄膜合成和铁电 KTO 分析指明了光明的未来。
摘要我们报告了由单晶立方ktao 3中的位错介导的室温散装可塑性,与传统的知识形成了鲜明的了解,即单晶ktao 3容易受到脆性裂解的影响。使用环状Brinell凹痕,划痕和单轴体积压缩的基于力学的组合实验方法始终显示从Mesoscale到宏观尺度的KTAO 3中的室温脱位。这种方法还提供可调的脱位密度和塑性区域尺寸。扫描传输电子显微镜分析基于激活的滑移系统为<110> {1-10}。鉴于KTAO 3作为新兴的电子氧化物的意义越来越重要,并且对调谐氧化物物理特性的脱位的兴趣越来越大,我们的发现有望引发与脱位的KTAO 3的协同研究兴趣。
基于KTAO 3的二维电子气体(2DEGS)由于其高RASHBA自旋 - 轨耦合(SOC)和栅极电压可调性而成为自旋轨道货币学的有前途的平台。最近在KTAO 3 2DEG中发现了超导状态,现在将其潜力扩大到拓扑超导性。尽管使用角度分辨光发射光谱(ARPES)绘制了各种晶体学取向的KTAO 3表面的带状结构,但对于超导KTAO 3 2DEGS并非如此。在这里,我们通过ARPES测量结果揭示了基于KTAO 3(111)单晶的超导2DEG的电子结构。我们使用紧密结合模型拟合数据,并计算相关的旋转纹理,以使您的SOC驱动物理学洞悉该迷人系统的SOC驱动物理。
摘要二维超导性和拓扑性非平凡状态的交点具有广泛的量子现象,包括主要的量子现象。我们报告了Tio X /KTAO 3(111)接口的二维超导性和弱反定位的观察。由于超导水坑无法达到相位相干性,残留的饱和电阻持续到过渡温度以下。在超导转变附近观察到弱反定位的特征,这表明超导波动和量子相干的准胶片效应的共存。超导接口显示大约一个数量级较大的弱反定位校正,该校正与非驱动接口相结合,暗示了这些接口中相对较大的相干长度。
多功能材料已被确定为开发低功耗技术的关键组成部分。在这方面,过渡金属氧化物已成为理论和实验研究的新焦点,因为它们具有可调的铁电性、磁性、巨磁电阻、多铁性和超导性,这些特性源于结构、电子和磁相关性的微妙相互作用 [1, 2]。如果异质结构中的至少一种组成化合物是过渡金属氧化物钙钛矿,也可以赋予其新功能。[3–6] 在宽带隙绝缘体 LaAlO 3 和 SrTiO 3 (STO) 的界面附近证实了二维金属态 (2DES),它还具有超导性 [7–9] 和大范围可调的 Rashba 自旋轨道耦合 [10],为自旋电子学创造了良好的机会 [11, 12]。此外,对几种ATiO 3 钙钛矿(A=Sr、Ba、Ca)和KTaO 3 的裸露或封盖表面的ARPES测量发现了受限的2DES[13–15];对于STO,提出了磁性迹象,并做出了拓扑状态的理论预测[16–18]。对于先验非极性材料,例如STO和CaTiO 3 (CTO),实验证据表明位于表面附近的氧空位提供了形成金属态的导带载流子[19–22]。块体CTO是绝缘体,带隙为3.5 eV[23]。低于1300 K,氧八面体的大角度旋转和倾斜迫使CTO变为正交结构[24],具有旋转角(φ=9°)和倾斜角(θ=12°)[25]。缺氧的 UHV 清洁 (001) 表面的 ARPES [21, 22] 光谱揭示了低于费米能级 EF 约 1.3 eV 的带内态和三个占据能带,构成 2DES。第一和第三个能带在布里渊区 (BZ) 中心 Γ 附近具有主导的 d xy 特征。第二个能带为
在二维电子系统(2DE)中发现了这种丰富行为的显着示例,该系统在带绝缘子3(LAO)和SRTIO 3(STO)之间形成的界面形成。[3]在基于氧化物的2DE中观察到了许多有趣的物理现象,包括超导性,[4]一种有趣的磁反应,[5,6]和非常规的RashBA效应。[7–9]基于该系统的不同设备已被证明,首先通过编写原子力显微镜的尖端编写结构来避免与氧化物的光刻图案相关的固有困难。[10]虽然最终克服了这些,并且证明了具有电子束光刻术的电场效应的有效制造[11] [11]在LAO/STO中实现高迁移率2DE所需的高增长温度仍需为设备制造带来挑战。[12]可以通过在室温下沉积Al层来形成2DE的演示,已经为在设备中实现基于STO的2DS的新观点开辟了新的观点。[13]最近观察到基于Al/sto 2DES的设备中非常大的旋转转换效应,突出了该系统对氧化物电子产品的潜力。[14]同样的工作还表明,2DES的Complex频段结构对于其属性和设备性能至关重要。现在,在最常见的晶体学方向上,通过角度分辨光学光谱(ARPE)对Sto裸露面的2DE的电子结构已经进行了很好的研究。[15–20]该2DE是通过引入氧气空位来形成的,这些空位是通过在UHV条件下用高能量光子的辐照在裸露表面产生的。[21]相同的机制允许在其他氧化物(如KTAO 3,SNO 2和TIO 2)中稳定表面2DES [22-26],并且与Ar Ion bombard bombard的金属STO表面层不同。[27,28]铝在UHV裸露表面上的铝沉积以类似的方式产生了2DE。在这种情况下,由于有效的氧化还原反应而产生了氧空位,而Al膜从底物中泵入氧气,而氧气则将其氧化为绝缘Alo X。[13],由于诱导此Al/sto 2DE仅需要很少的Al,因此表面敏感的ARPES测量也可以访问。正如预期的那样,通过两种方法获得的2DE的电子结构相似,因为两个系统都出现了氧气空位
抽象的许多资源现在正在生成,加工,存储或提供与肾脏相关的分子,病理和临床数据。参考本体提供了一个支持知识,数据组织和集成的机会。肾脏精密医学项目(KPMP)团队在人类表型本体论(HPO)中贡献了329个肾脏表型术语(HPO),并确定了许多急性肾脏损伤(AKI)或慢性肾脏病(CKD)的许多子类别。肾脏组织本体论(KTAO)进口并整合了现有本体论(例如HPO,CL和Uberon)的肾脏相关术语,并代表了259个与肾脏相关的生物标志物。我们还开发了一种精确的医学元数据本体论(PMMO),以整合来自KPMP和Cellxgene资源的50个变量,并应用PMMO进行综合分析。在健康对照或AKI/CKD疾病状态下特别分析了肾脏基因生物标志物的基因表达谱。这项工作演示了基于本体的方法如何支持多域数据以及知识组织和集成以提高精度医学。引言肾脏精密医学项目(kpmp)(https://www.kpmp.org/)是一个NIH/NIDDK-FUND的财团,旨在精确地表征慢性肾脏病(CKD)的复杂性(CKD)和急性肾脏受伤(AKI)在患者水平上以提高我们的能力治疗(以提高我们的能力),以提高我们的能力(1)。虽然AKI是肾功能的突然且通常是暂时的暂时丧失,但CKD在很长一段时间内会降低肾脏功能,并可能导致末期肾脏疾病。但是,也可以观察到从AKI到CKD的过渡。AKI和CKD与涉及遗传,病理,分子,社会和环境因素的复杂发病机理有关。尽管做出了巨大的努力,但尚未完全理解肾脏疾病发展和发展的基础机制,部分原因是整合来自多个知识领域的数据的挑战。因此,整合与肾脏疾病有关的不同类型的数据应该成为进一步深入研究的主题。最近已努力生成与肾脏相关的数据,并使研究人员公开使用。人类生物分子图集计划(Hubmap)旨在开发一个开放且全球的平台来绘制人体健康细胞(2)。人类细胞地图集项目(HCA)是一个全球财团,旨在绘制人体中的每种细胞类型并开发人类细胞的3维地图集,以改变我们对生物学和疾病的理解(3)。与HCA密切相关的Cellxgene资源是一套计算工具,可帮助科学家存入,下载,查询和视觉探索策划和标准化的单细胞生物学数据集(4)。