Nikhil Sud 博士介绍了阿育王大学中心所做工作的背景,并阐述了阿育王以人为本的能源转型中心 (ACPET) 所做工作的重要性和相关性。Vaibhav Chaudhary 先生概述了 ACPET 在四个垂直领域所做工作的总体轮廓,即 a) 能源政策、b) 脱碳和资源效率、c) 能源转型融资和 d) 能源转型的社会影响,以及 ACPET 的“能源未来”实验室正在开展的广泛分析工作。Rakesh Kacker 先生制定了由汇丰印度支持的正在进行的“能源转型融资”项目的更大愿景和部分内容,该项目涉及两个子组成部分:a) 分散式能源转型融资解决方案和 b) 配电公司特定的清洁能源转型融资解决方案。
2009 年 4 月 7 日星期四 统计一致性与计量一致性的比较 Raghu N Kacker 和 Ruediger Kessel 美国国家标准与技术研究所 美国马里兰州盖瑟斯堡 20899 电子邮件:raghu.kacker@nist.gog ruediger.kessel@nist.gov 摘要 对同一测量进行多次评估时,传统的一致性概念是统计性的。一致性的统计观点与测量不确定度的现代观点不符;特别是,它不适用于以具有标准不确定度的测量值表示的测量结果。因此,《国际计量词汇》第 3 版 (VIM3) 引入了对同一测量的多个测量结果的计量兼容性概念。我们更喜欢用计量一致性这个术语来表示 VIM3 的计量兼容性概念。本文讨论了两种一致性概念的区别。1.引言目前最广泛使用的评估同一被测量的多个测量值一致性的方法是物理学家Raymond T. Birge于1932年发表的Birge检验法[1]。Birge检验法基于统计误差分析。由此产生了同一被测量的多个测量值的统计一致性的概念。随着测量科学技术的进步,测量值统计误差分析观点的局限性成为科学技术测量交流的障碍,因此,世界领先的计量学家发展了现代测量不确定度概念。现代观点在《测量不确定度表示指南》(GUM)[2]中有所描述,并在《国际计量词汇》(VIM3)第三版[3]中得到扩展。根据 GUM 和 VIM3,测量结果由测量值及其相关的标准不确定度组成。测量值被视为预期值,标准不确定度被视为归因于被测量未知值的知识状态概率密度函数 (pdf) 的标准偏差。通常,归因于被测量的 pdf 是不完全确定的。一致性的统计观点与 GUM 的测量不确定度观点不符,它不适用于以具有标准不确定度的测量值表示的测量结果。因此,VIM3 引入了计量兼容性的概念
D. Richard Kuhn,NIST,kuhn@nist.gov Raghu N. Kacker,NIST,raghu.kacker@nist.gov Yu Lei,德克萨斯大学阿灵顿分校,ylei@uta.edu Dimitris Simos,SBA 研究部,DSimos@sba-research.org 摘要:测试是软件保证最常用的方法,但它既是一门科学,也是一门判断和艺术。结构覆盖通过为某些测试完整性概念建立正式定义的标准,为该过程增加了一些严谨性,但即使是完全覆盖,无论如何定义,也可能会遗漏与测试套件中未包含的罕见输入相关的故障。我们建议,结构覆盖度量必须辅以输入空间覆盖度量。有用的输入空间度量是存在的,并且与结构覆盖度量有关系,提供了一种验证是否已定义适当输入模型的方法。简介 将测试作为一种软件验证形式的主要反对意见之一是,它永远不可能证明被测系统适用于所有可能的输入。也很难提供关于测试集是否足以验证被测系统 (SUT) 是否正常工作的有意义的陈述。传统的结构覆盖率测量,通常是语句或分支覆盖率,有很多不足之处。即使执行了所有语句并进行了所有分支,也不能保证输入空间已被充分覆盖以进行故障检测。潜在错误可能会在稍后出现非常罕见的条件组合,而这些条件组合并未包含在测试中。系统地划分输入空间的方法已被广泛研究,但大多数方法必然涉及大量主观判断,并且不提供完整性的定量测量。组合方法提供了基于现有输入空间划分技术的方法,以提供更严格的测试。覆盖率测量完整的输入模型是实现全面测试的目标的一部分。根据在定义完整性时要考虑的系统方面,存在多种方法来确定何时认为测试足够。通常,这些方法包括完全覆盖要求的一些概念,并且可能还考虑代码的结构覆盖率。在软件工程中,结构覆盖率是指程序执行程度的度量。最广泛使用的两种度量是语句覆盖率(已执行的程序语句的比例)和分支覆盖率(也称为判定覆盖率),即被评估为真和假的分支的比例。还有许多其他度量或测试标准,包括条件覆盖率和修改后的条件判定覆盖率,并且可以证明这些标准形成了一个层次结构 [4]。例如,判定覆盖率包含语句覆盖率。结构覆盖率度量在衡量测试集的完整性方面很有价值,虽然它们的实用性有些有限。语句覆盖率是这些措施中最弱的,但未能实现完整的语句覆盖率至少表明代码没有得到充分的测试。分支覆盖率提供了更强大的