[1] K. Mochizuki, D. Kim, 和 H. Obuse, Phys. Rev. A 93 , 062116 (2016)。[2] L. Xiao, X. Zhan, ZH Bian, KK Wang, X. Zhang, XP Wang, J.Li, K. Mochizuki, D. Kim, N. Kawakami,Y. Wi, H. Obuse, B. Sanders, P. Xue, Nature Phys. 13 , 1117 (2017)。[3] L. Xiao, X. Qin, K. Wang, Z. Bian, X. Zhan, H. Obuse, B.Sanders, W. Yi, P. Xue, Phys. Rev. A 98 , 063847 (2018)。[4] K. Mochizuki, D. Kim, N. Kawakami, 和 H. Obuse, Phys. Rev. A, 102 , 062202 (2020)。[5] M. Kawasaki、K. Mochizuki、N. Kawakami 和 H. Obuse, Prog. Theor. Exp. Phys. 2020 , 12A105 (2020)。[6] N. Hatano 和 H. Obuse, Annals of Physics 435, 168615 (2021)。[7] T. Bessho、K. Mochizuki、H. Obuse 和 M. Sato, Phys. Rev. B 105 , 094306 (2022)。[8] R. Okamoto、N. Kawakami 和 H. Obuse(准备中)。
60。Stapleton,L.,Saxena,D.,Kawakami,A.,Nguyen,T.谁对“公共利益技术”有兴趣?:与地方政府和受影响社区合作的关键问题。在2022年计算机支持合作与社会计算会议的同伴出版物中(CSCW 2022),第282-286页。
类风湿关节炎 (RA) 是一种以慢性关节炎为特征的炎症性自身免疫性疾病,常伴有关节外影响,如间质性肺病 (ILD)。RA 相关 ILD (RA-ILD) 是一种严重的并发症,可影响预后 ( 1 , 2 )。尽管生物制剂抗风湿药 (bDMARDs) 和 Janus 激酶抑制剂 (JAKi) 的出现扩大了 RA 的治疗选择,但 RA-ILD 的最佳治疗方法仍未确定 ( 3 , 4 )。值得注意的是,一些研究强调,在患有 ILD 的 RA 患者中使用抗风湿药物时,需要注意呼吸道感染和药物性肺损伤的风险 ( 5 , 6 )。目前,阿巴西普(一种细胞毒性 T 淋巴细胞相关蛋白 4 (CTLA4) 胞外结构域与人 IgG1 Fc 区融合蛋白)被认为是治疗伴有 ILD 的 RA 患者最合理的选择 ( 7 );然而,最近的报告表明,JAKi 对 RA-ILD 疾病行为的影响方面的有效性和安全性可能与阿巴西普相当 ( 8 , 9 )。与 RA-ILD 进展或急性加重有关的因素包括寻常型间质性肺炎 (UIP) 模式、用力肺活量下降、吸烟和抗环瓜氨酸蛋白抗体 (ACPA) 高滴度 ( 10 , 11 )。此外,与新发 RA-ILD 相关的危险因素包括高龄、男性、吸烟、类风湿因子和 ACPA 高滴度以及关节炎活动性控制不佳 (12-14)。上皮-间质转化 (EMT) 是一个关键的生理过程,在此过程中上皮细胞失去极性并转变为间质表型。上皮细胞标志物 E-钙粘蛋白的下调和间质标志物 N-钙粘蛋白的上调(也称为钙粘蛋白转换)是 EMT 的特征 (15,16)。尽管 EMT 具有重要的生理意义,但它也与各种病理状态有关,尤其是在细胞损伤和慢性炎症后 (17)。事实上,EMT 被认为是 RA-ILD 发病机制中的关键过程之一,类似于导致特发性肺纤维化的事件(18)。人类肺泡 II 型细胞的体外研究表明,转化生长因子-b 和白细胞介素 (IL)-6 等因子治疗可诱导 EMT,据报道,阻断 JAK/STAT 信号通路可抑制 EMT(19)。然而,治疗 RA 的主要药物甲氨蝶呤 (MTX)(20)对 EMT 的影响仍未得到充分探索。本研究的目的是比较用 JAKi 或 bDMARDs 治疗的 RA-ILD 患者胸部计算机断层扫描 (CT) 图像的时间变化,并确定与影像学上 RA-ILD 恶化相关的因素。此外,我们通过体外研究 JAKi 和 MTX 治疗对 RA-ILD 患者纤维化状态的可能作用机制,研究了它们对 IL-6 诱导的肺泡上皮细胞 EMT 的影响。我们的研究结果揭示了 JAKi 和 MTX 治疗抑制 RA-ILD 进展的潜力。
Meigan Aronson,(UBC,加拿大温哥华)Tommaso Callarco,(德国朱利希)Susan Coppersmith,(UNSW,悉尼)Marcello Dalmonte,(ICTP,Trieste Italy)Rosario Fazio Rika Kawakami(日本Riken)Daniel损失(Riken andUniv。Basel,Switzerland)Tiago Mendes,(德国奥斯堡大学)Bill Munro(NTT)Will Oliver,(MIT Sai(Riken和UST,东京日本)Benoit Vermersch,(CNRS,格林布勒法国)弗兰克·威廉·莫赫(Frank Wilhelm-Mauch)
智能手机、智能家居、智能导航等都是人工智能(AI)在日常生活中的重要应用。人工智能最早出现于20世纪50年代,随着对它的认识和重新定义,人工智能逐渐被提出。目前,人工智能被定义为研究和开发用于模拟、扩展和增强人类智能的理论、方法、技术和应用系统的一门新技术科学(1)。我们目睹了人工智能的快速发展,其在医疗保健,特别是医学图像处理和分析方面的研究和应用方兴未艾。与更易于获取且采集过程更容易标准化的计算机断层扫描(CT)和磁共振成像(MRI)相比,正电子发射断层扫描(PET)更昂贵、获取范围更广,其更复杂的技术操作过程给标准化图像采集带来了困难。虽然AI在PET领域的研究和应用进展相对较慢,但由于PET作为分子影像的重要领域,AI在PET成像领域的应用正受到广泛的关注,成为研究热点。在技术层面,针对不同厂家、不同仪器型号、不同成像技术的PET扫描仪在成像过程中参数和质量的差异性,开展了图像后处理研究,包括图像标准化、归一化、小波变换、高斯变换、特征预处理等。AI赋能的分割技术进一步提高了AI特征的稳定性和AI研究的可重复性(2、3)。为了满足临床应用的需求,通过深入挖掘图像特征,结合人群和临床证据,构建机器学习模型,PET 中的 AI 已被开发用于病变检测和边界描绘、诊断和鉴别诊断、风险预测和预后评估,甚至预测临床基因或分子分型( 1 , 4 – 7 )。本研究主题包括 11 篇出版物,强调了 AI 如何支持 PET 图像处理和分析。最近,许多研究小组一直致力于将 AI 用于 PET 图像解释,例如病变检测。Kawakami 等人应用对象深度学习 (DL) 检测模型 You Only Look Once Version 2 (YOLOv2) 来检测 18 F-FDG PET 中的生理和异常摄取。)。)。结果表明,MIP 图像上的生理摄取被快速准确地识别(Kawakami 等人。YOLOv2 检测到的异常摄取与手动识别的覆盖率较高(Kawakami 等人。精确的检测和快速的反应将成为疾病诊断的有用工具。最大标准化摄取值 (SUVmax) 是解释图像和评估的最常用参数
美国驻日陆军基地 2024 年暑期实习计划 美国驻日陆军基地正在座间营和吴市地区举办实习计划。该计划旨在为寻求在动态工作环境中获得经验、接触英语会话和美国文化的日本大学生提供绝佳机会,同时与来自日本和美国的美国军事人员和工作人员一起工作。通过亲身实践的工作经验、入职培训、实地考察和演示,参与者可以加深对美国军事设施内各种职责的了解。实习期:2024 年 8 月 5 日至 23 日(周一至周五,8 月 12 日日本假期除外)职位和地点:请参阅附件“2024 年暑期实习职位列表”了解可用的实习职位。1 至 5 号职位将位于广岛县(吴市、秋月市或川上市),6 至 30 号职位将位于神奈川县(座间营)。资格:所有申请人必须符合以下标准。
DNA复制已被研究了数十年。过去15年是对复制起始复合物结构的深入探索和复制起始蛋白的作用机理的时期。多种研究模型(细菌染色体,质粒和噬菌体)已用于研究DNA复制起始,并且获得的结果使我们更加接近将有关此过程机理的难题放在一起。简单的Oric结构,其中包含DNAA的五个规范结合位点(R-Type DNAA-Boxes)(Fuller等,1984),已通过确定的此复制引发剂的其他结合位点进行了扩展(Kawakami等,2005,2005; Miller等; Miller等,2009; Rozgajaja; Rozgaja e et al。,2011)。发现了新活动,例如通过细菌复制启动器(DNAA和RCTB)在DNA放松元件(欠款)区域内的单链DNA(ssDNA)结合(Ozaki et al。,2008; Duderstadt et al。,2011; Chatterjee等,Chatterjee等,2020; DNAA和RCTB)。还确定了质粒复制引发剂(REP蛋白)(Wegrzyn等,2014)的核蛋白复合物与SSDNA的形成,并发布了复制启动器的新结构(Orlova等,2017; Wegrzyn等,20211)。尽管这些年来使用了许多新方法,并且对DNA复制的知识得到了扩展,但仍在讨论DNA复制启动的详细机制,并且仍然有许多问题需要回答。
2024 卫生部。允许部分或全部复制本作品,但必须注明来源,且不得出售或用于任何商业用途。 CONITEC 对本作品中的文本和图像的版权负责。编制、分发和信息 卫生部 科学、技术、创新和健康综合体秘书处 - SECTICS 卫生技术管理和整合部 - DGITS 卫生技术评估总体协调 - CGATS Esplanada dos Ministérios,Bloco G,Edifício Sede,8º andar 邮政编码:70.058-900 - Brasília/DF 电话:(61) 3315-2848 网站:https://www.gov.br/conitec/pt-br 电子邮件:conitec@saude.gov.br 报告编制 Unifesp-Diadema (NUD) 卫生技术评估中心: Elene Paltrinieri Nardi Ísis Nalin Fernandes Nonato Tainá Freitas Saldanha Daniele Yukari Kawakami Renato Rocha Martins Daniela Oliveira de Melo 技术前景监测 Karine Medeiros Amaral CMTS/DGITS/SECTICS/MS ANA CAROLINA de FREITAS lops/dgits/sectics/MS患者的透视技术合并 - citec/dgits/sectics/sectics/sectics/sectics/sectics/sclirice moreyira figueiredo defigueiredo pereiredo pereiredo pereira meria soio luia lua souir sOuira nogue soura nogue OS通过公共咨询技术合并而获得的贡献的定性分析-citec/dgits/sectics/ms andrija almeira almeida almeida clarice clarice clarice oririra portuga Xavier -CGATS/DGITS/SECTICS/MS监督Luciene Fontes Schluckebier Bonan- DGITS/SECTICS/MS
Masaki Azuma , Tokyo Institute of Technology, Japan Chen Biao , Northwestern Polytechnical University, China Zhongchun Chen , Tottori University, Japan Kenji Doi , Osaka Yakin Kogyo Co., Ltd., Japan Ayman Hamada Abdelhady Elsayed , Central Metallurgical Research and Development Institute (CMRDI), Egypt Masayoshi Fuji , Nagoya Institute of Technology, Japan Masashi Fujinaga , JPMA Adviser, Japan Hiroshi Fujiwara , Ritsumeikan University, Japan Hiroki Hara , Tungaloy Corporation, Japan Norimitsu Hirose , Höganäs Japan KK, Japan Kuen-Shyang Hwang , National Taiwan University, Taiwan Kenji Iimura , University of Hyogo, Japan Miki Inada , Kyushu University, Japan Keiichi Ishihara , Kyoto University, Japan Takashi Itoh , Nagoya University, Japan Shota Kariya , Osaka University, Japan Hidemi Kato , Tohoku University, Japan Masaki Kato , Doshisha University, Japan Masaru Kawakami , Fuji Die Co., Ltd. ,日本日本日本Teiichi Kimura的日本Katmi Kikuchi,日本高级陶瓷中心,Akira Kishimoto,日本Yoshitaka kitamoto,东京吉塔克山。 ,日本山高马西岛,霍西大学,日本木叶莫里塔,国家材料科学研究所(NIMS),日本新吉穆尔托,九州大学,日本日本伊萨哈塔塔卡哈塔(AIST),日本 Naoyuki Nomura,日本东北大学 Gaku Obara,日本明治大学 Tomoya Ohno,日本北见工业大学 Chikara Ohtsuki,日本名古屋大学
