了解自旋波(SW)阻尼以及如何将其控制到能够放大SW介导的信号的点是使所设想的宏伟技术实现的关键要求之一。甚至广泛使用的磁性绝缘子在其大块中具有低磁化阻尼(例如Yttrium Iron Garnet),由于在最近的实验中观察到的,由于与金属层与金属层的不可避免接触,因此SW阻尼增加了100倍。,adv。量子技术。4,2100094(2021)]以空间解析的方式映射SW阻尼。在这里,我们使用扩展的Landau-lifshitz-gilbert方程对波矢量依赖性的SW阻尼提供了微观和严格的理解,并具有非局部阻尼张量,而不是常规的本地标量尺吉尔伯特damp,从Schwinger-keldysh norther-keldysh nortakys damper中衍生而成。在这张照片中,非局部磁化阻尼的起源以及诱导的波载体依赖性SW阻尼是磁绝缘子的局部磁矩与来自三种不同类型的金属叠层器的传导电子的局部磁矩的相互作用:正常,重型和altermagnetic。由于后两种情况下传导电子的自旋分解能量散布引起的,非局部阻尼在自旋和空间中是各向异性的,并且与正常金属覆盖物的使用相比,可以通过更改两层的相对方向来大大降低。
在BCS理论[1],[2]中,使用了四组分旋转器的哈密顿量。因此,这位哈密顿量的Keldysh Green的功能是八乘八个矩阵,智障,高级和Keldysh组件均为四个矩阵四。但是,在许多作品中[3],[4],[5],[6],使用四乘四个Keldysh Green的功能。这是可能的,因为可以在常规和某些类型的非常规的超导体中分别研究不同的自旋扇区。在本节中,将重新审视不同自旋扇区的方程式的分离。为了清楚表达式,只会讨论智障部分,高级和Keldysh部分类似地跟随。BCS理论[7] [1],[2]描述了与旋转相反的旋转的粒子之间的吸引人相互作用,旋转器的Hamiltonian H(ψK↑,ψK↓,ψ† - K↑,ψ†− K k↓)t IS