学习是指观察记录额外特征的数据。“学习”或“世界反馈”是通过观察记录额外特征的数据而发生的。记录行动、结果和情境特征实例的“案例”数据是 Gilboa 和 Schmeidler (2001) 提出的基于案例的决策理论的基本概念。将学习视为主体对新数据形式的客观信息的主观反应,可能为研究具有不可预见的偶然事件的学习提供一个有前途的框架。事实上,它可能调和经典的贝叶斯方法,其中新数据仅包含熟悉的情境特征并且仅增加观察频率,以及数据包含决策者迄今未知的“新”特征记录的情况。
(609) 535-2541 | seanrk06@gmail.com | 美国公民 | https://seanklein.info/ 教育 普渡大学,610 Purdue Mall,西拉斐特,印第安纳州 47907 预计毕业日期,2028 年 5 月 意向专业:计算机工程;当前学分:33 康瑟尔罗克南高中,毕业班前 10%;GPA:4.3 毕业,2024 年 6 月 相关 AP 课程:计算机原理、微积分 AB、物理 C、计算机科学 A、统计学 工作经历 Action Manufacturing Company,工程实习生 宾夕法尼亚州布里斯托尔 | 2023 年 6 月 - 2023 年 8 月 ● 为 M107 弹头建造和测试武器装备,通过严格评估确保部署可靠性。 ● 将十年前的原理图集成并组织到虚拟目录中,增强可访问性并减少检索时间。 ● 开发了用于 MK60 齿轮系统质量控制的检查系统,通过系统的测试协议确保可靠的现场使用。 阿宾顿神经病学协会,研究助理 宾夕法尼亚州阿宾顿 | 2021 年 6 月 - 2021 年 8 月 ● 审查了 400 多份患者记录,以确定预测偏头痛发作的症状,为研究论文提供了全面的数据集。 ● 管理面向患者的设施,确保设备进行适当的维护并进行细致的检查以维持高标准的患者护理。 活动和领导力 Scope Consulting,顾问 印第安纳州西拉斐特 | 2024 年 9 月 - 至今 ● 咨询 Beta Agency 以确定南加州的商业房地产机会,使用 Power Bi 构建可修改的界面来可视化店面数据,包括销售的商品、净收入和市场份额 技术俱乐部,联席总裁兼联合创始人 宾夕法尼亚州荷兰 | 2021 年 8 月 – 2024 年 6 月 ● 将俱乐部会员人数从成立之初发展到 50 多名活跃学生 ● 协调来自 NASA、普惠、Catalent Pharma Solutions 等公司的全国知名演讲者 ● 开发并组织了一个有 10 多名与会者的 3D 打印研讨会,以提高学生的实践知识和对技术的热情 Sigma Alpha Rho:犹太青年 501(c)(3),国家和地区委员会主席 宾夕法尼亚州里奇伯勒 | 2021 年 3 月 – 2024 年 6 月 ● 于 2021 年成立分会,会员人数发展到 20 多名学生 ● 与国家校友委员会协调活动,包括与犹太救济署合作的食品募捐活动 ● 通过校友和当地捐款为当地分会筹集了 5,000 美元以上 社区参与 可扩展不对称生命周期参与 (SCALE),参与者 印第安纳州西拉斐特 | 2024 年 11 月 – 至今 ● 沉浸式教育计划,为国防部和国防工业基地培养微电子劳动力。 ● 将政府和国防工业基地实习与研究和指导相结合。 宾夕法尼亚州 STEM 充实计划 501(c)(3),创始人兼联合总裁 宾夕法尼亚州里奇伯勒 | 2022 年 11 月 – 2024 年 6 月 ● 成立一家非营利组织,以提高青少年 STEM 素养,与当地企业合作,扩大教育资源。 ● 设计并举办了 Web 开发研讨会,向 10 多名参与者传授基础编码技能,并培养他们对技术的兴趣。 项目与奖项 最终设计评审,在美国宇航局休斯顿举行的最终设计评审中,318 名被选中展示昆虫纳米实验室原型的学生之一,展示了国际空间站 (ISS) 上可持续食物来源的创新解决方案。 个人作品集网站,https://seanklein.info/,展示了三个已完成的黑客马拉松项目,其中一个获得了荣誉奖,此外还介绍了更多关于我自己的信息。 奖学金,获得 Sigma Phi Epsilon Balanced Man 奖学金(440 名申请者中选出 3 名);因在兄弟会内外的卓越表现获得 Sigma Alpha Rho 奖学金;获得 Zeta Beta Tau 奖学金 威德纳领导力奖,宾夕法尼亚州、新泽西州和特拉华州 129 名被选中的学生之一,因其在学校和社区活动中的卓越领导能力,由威德纳大学与 NBC10 合作表彰。 Jewish Exponent 文章,接受 Jewish Exponent 采访并被引用,文章内容涉及 Sigma Alpha Rho 的复兴 技能与兴趣 硬件技能:LT-Spice、关键任务应用程序硬件集成 编程:全栈 Web 开发、Power Bi、Java、Python、JavaScript、C、HTML 和 CSS;ReactJS;MongoDB,目前正在攻读 AWS 解决方案架构师认证 项目管理:团队协作、项目时间表;客户沟通 数据分析:具有统计分析、研究方法经验;质量控制系统关键任务应用程序的硬件集成编程:全栈 Web 开发、Power Bi、Java、Python、JavaScript、C、HTML 和 CSS;ReactJS;MongoDB,目前正在攻读 AWS 解决方案架构师认证项目管理:团队协作、项目时间表;客户沟通数据分析:具有统计分析、研究方法的经验;质量控制系统关键任务应用程序的硬件集成编程:全栈 Web 开发、Power Bi、Java、Python、JavaScript、C、HTML 和 CSS;ReactJS;MongoDB,目前正在攻读 AWS 解决方案架构师认证项目管理:团队协作、项目时间表;客户沟通数据分析:具有统计分析、研究方法的经验;质量控制系统
4D渐近平坦的空间中的量子重力特征是由于软辐射头发而引起的自发对称性,这与IR差异的增殖密切相关。通过推定的2D CFT的全图描述预计没有此类冗余。在这两篇论文中,我们通过启动天体CFT(CCFT)中量子误差校正的研究来解决这个问题。在第一部分中,我们通过在Kleinian Hyperkhler SpaceTimes中重新审视非交通性几何形状来构建具有有限自由度的玩具模型。该模型遵守朝径向方向重新归一致的灯芯代数,并承认等距嵌入`la gottesman-kitaev-preskill。代码子空间由在柔软的时空波动下可靠的2量稳定态组成。hyperkhler空间的对称性是离散的,并转化为量子计算中熟悉的克利福德组。然后将结构嵌入扭曲空间的发病率关系中,为即将到来的工作中解决的CCFT制度铺平了道路。
摘要:在语音中纠正LISP对许多人来说可能会非常困难,因为它们可能没有意识到它们是否正在倾斜。为了帮助受影响的人,我们已经开发了一种简单的算法,以实时识别sigmatismus flashalis在“ s”声音中通过频域中的分析中的语音声音。算法在校准后识别LISP频带内的峰值。已经确定了3000-4000 Hz的频带对于LISP通常是准确的,对于单个男性测试对象,对于lisp而言,对于lisp的频段来说,频段为2500-3000 Hz。将语音记录分为较小的段,并比较了这些段中检测到的LISP和非LISP的数量以分类。从测试中,确定的段长度为0.5 s会产生最佳结果。该算法并未检测到每个LISP部分,但是它不会引起误报。我们在朱莉娅(Julia)的实施,具有多线程的每文件分析能够在高通Snapdragon 860智能手机芯片组上分析5 s至10 s长度之间的20个长度的文件,这意味着分析的速度远远快。提出的算法是一种简单的原型算法,能够在频域中对音频进行实时分析,以识别给定窗口中横向Lisps是否是主导的发音。该方法仅针对单个测试主题进行测试。但是,提出了向新个体调整参数的校准算法。该算法本身应该很容易扩展,以识别其他语音障碍。
定量SEM/EDS分析的原位标本方向方法的开发和验证粘土Klein 1*,Faith Corman 1,Joshua Homan 1,Brady Jones 1,Brady Jones 1,Abbeigh Schroeder 1,Heavenly Duley 1和Chunfei Li 11。宾夕法尼亚州克拉翁大学,化学,数学和物理系,美国宾夕法尼亚州克拉里昂 *通讯作者:clay.w.klein@gmail.com定量分析具有扫描电子/能量分散式X射线/能量的标本元素组成的元素组成,以确保X射线光谱(SEM/EDIMENS)不需要一定的情况。错误。特别是,为了准确的定量EDS分析,标本表面必须足够平坦,并且与SEM的电子束具有正交性[1,2]。在本演示文稿中,我们报告了一种在SEM中,肉眼看不见的足够平坦的微观表面的方法的开发和验证,使得表面与传入的电子束是正交的。该方法基于使用多个SEM图像来测量两个点之间的距离的变化,而两个点之间的界线垂直于SEM倾斜轴,在不同的倾斜角度上。该方法利用了多个SEM图像和测量值,它为我们当前在开发和统计上分析试样方向过程中使用的工具提供了一个良好的测试基础,比以前的方法更有效,更精确[3]。SEM具有两个操作,可以实现对象的原位操纵:旋转和倾斜。要应用该方法,我们使用了以随机旋转和倾斜角度定向的宏观平坦样本。2。[4]。旋转操作通过平行于传入的电子束(定义为轴)的轴的角度旋转样品,而倾斜操作则通过围绕轴(轴)垂直于旋转轴的角度倾斜样品。对于以某个任意角度倾斜的平面,我们将适当的角度定义为 - 参数空间中的坐标,使得平面的表面与电子束正交。一旦确定了足够平坦的平面,我们可以通过以下步骤确定适当的角度:(1)以增量旋转角度进行一系列SEM图像,((2)用一定角度倾斜样品,(3)重复(3)重复(1)和(4)度量,对于每个旋转角度,在斜角和直至图像中的两个特征之间的距离。可以通过形成倾斜度的比率并在每个旋转角度以测量为单位,并将理论上确定的曲线与数据拟合,从而计算出适当的角度。具有50 m的视野,每10°旋转以0°,20°和-20°旋转每10°旋转。测量是在SEM图像上进行的,如图1形成两个点之间的距离之比。在图中显示了这些测量结果的曲线使用最小二乘曲线拟合程序,确定最佳和值。图中还显示了以适当角度定向的样品的图片2;我们看到表面似乎与电子束的方向是正交的。
摘要 - 量子交换机(QSS)服务量子通信网络中量子端节点(QCN)提交的请求,这是一个具有挑战性的问题,这是一个挑战性的问题,由于已提交请求的异构保真要求和QCN有限的资源的异质性保真度要求。有效地确定给定QS提供了哪些请求,这是促进QCN应用程序(如量子数据中心)中的开发。但是,QS操作的最新作品已经忽略了这个关联问题,并且主要集中在具有单个QS的QCN上。在本文中,QCN中的请求-QS关联问题是作为一种匹配游戏,可捕获有限的QCN资源,异质应用程序 - 特定的保真度要求以及对不同QS操作的调度。为了解决此游戏,提出了一个量表稳定的request-QS协会(RQSA)算法,同时考虑部分QCN信息可用性。进行了广泛的模拟,以验证拟议的RQSA算法的有效性。仿真结果表明,拟议的RQSA算法就服务请求的百分比和总体实现的忠诚度而实现了几乎最佳的(5%以内)的性能,同时表现优于基准贪婪的解决方案超过13%。此外,提出的RQSA算法被证明是可扩展的,即使QCN的大小增加,也可以保持其近乎最佳的性能。I. i ntroduction量子通信网络(QCN)被视为未来通信技术的支柱,因为它们在安全性,感知能力和计算能力方面具有优势。QCN依赖于Einstein-Podolsky-Rosen(EPR)的创建和分布,这是遥远QCN节点之间的纠缠量子状态[1]。每个EPR对由两个固有相关的光子组成,每个光子都会转移到QCN节点以建立端到端(E2E)纠缠连接。然而,纠缠光子的脆弱性质导致指数损失,随着量子通道(例如光纤)的行驶距离而增加。因此,需要中间量子中继器节点将长距离分为较短的片段,通过对纠缠的光子进行连接以连接遥远的QCN节点[2]。当此类中继器与多个QCN节点共享多个EPR对以创建E2E连接时,它们被称为量子开关(QSS)。
Saednia,Khadijeh,Tabbarah,Sami,Lagree,Andrew,Wu,Tina,Klein,Klein,Jonathan,Jonathan,Garcia,Garcia,Eduardo,Hall,Michael,Chow,Edward,Edward,Rakovitch,Rakovitch,Eileen,Eileen,Childs,Childs,Charmaine,Charmaine,Sadeghi-Naini,Ali,Ali和Tran,William(20202020)。使用监督的机器学习,定量热成像生物标志物可从乳房辐射疗法中检测急性皮肤毒性。国际放射肿瘤学杂志*生物学*物理学,106(5),1071-1083。[文章]
本讲座受版权和/或相关权利保护。本讲座由 Digital Scholarship@UNLV 提供,并获得了权利人的许可。您可以自由地以任何方式使用本讲座,只要这些方式符合您使用的版权和相关权利法律允许。对于其他用途,您需要直接获得权利人的许可,除非记录和/或作品本身中的 Creative Commons 许可证表明了其他权利。本讲座已被 Digital Scholarship@UNLV 的授权管理员接受纳入布鲁金斯学者讲座系列。有关更多信息,请联系 digitalscholarship@unlv.edu。
国际空间站(ISS)始终在船上约有3-5名机组人员,通常在ISS上持续约5-7个月。自2020年3月以来,ISS上发生了170个长期空间任务。因此,长期空间任务是太空探索的组成部分,并且随着月球和火星的任务即将到来,只会继续扩大持续时间。但是,长期空间任务给人机组人员带来了一些挑战。这些挑战中的大多数都与对微重力的生理适应有关,包括晕车,肌肉萎缩和心血管衰减。虽然不是很好,但在计划长期空间任务时要考虑的另一个主要因素是环境对宇航员的心理影响。居住在太空中的宇航员将无法进入自然景观和其他发现对心理压力和整体幸福感具有恢复性影响的环境。除了无法进入这些修复的自然环境之外,宇航员还将暴露于压力大,陌生的空间环境中。该迷你审查的目的是首先总结与与空间相关的压力源相关的文献。接下来,将提供有关生物质假说和恢复性环境的大量文献概述,因为这些文献可能是相对简单且具有成本效益的解决方案,以减轻长期空间任务中所面临的压力。最后,将介绍与太空胶囊中此类环境的设计以及未来的方向有关的考虑。
1研究中心JülichGmbH,能源与气候研究所,德国52425; fe.klein@fz-juelich.de(F.K. ); xi.tan@fz-juelich.de(X.T。 ); janina.ertmer@t-online.de(J.E。 ); j.w.coenen@fz-juelich.de(J.W.C. ); ch.linsmeier@fz-juelich.de(c.l. ); j.gonzalez@fz-juelich.de(J.G.-J. ); m.bram@fz-juelich.de(m.b。 ); p.bittner@fz-juelich.de(p.b. ); a.reuban@fz-juelich.de(A.R.) 2等离子物理系,激光和血浆技术研究所,国家研究核大学Mephi,Kashirskoe Sh。,31,115409,俄罗斯莫斯科; ymgasparyan@mephi.ru 3材料科学与工程学院,Hefei技术大学,Hefei 230009,中国4日4000,根特大学应用物理系,9000 GHENT,BELGIUM 5,BELGIUM 5,WISCONSIN -WISCONSIN-麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学,美国6号WI 53706,美国6研究中心,美国6研究中心JülichGmbH,中央工程学院,电子与分析学院,德国52425Jülich; i.povstugar@fz-juelich.de 7不同的基础能源研究机构,荷兰20,5612 AJ Eindhoven; t.w.morgan@differ 8材料科学系,核物理与工程研究所,国家研究核大学Mephi,Kashirskoe sh。,31,115409,俄罗斯莫斯科; absuchkov@mephi.ru(a.s.); dmbachurina@mephi.ru(d.b.) 9 CCFE,英国原子能管理局,库勒姆科学中心,阿宾登OX14 3DB,英国; duc.nguyen@ukaea.uk(D.N.-M。); mark.gilbert@ukaea.uk(M.G。) 10材料科学与工程学院,华沙技术大学,沃斯卡141,02-507华沙,波兰; damian.sobieraj.dokt@pw.edu.pl(D.S.1研究中心JülichGmbH,能源与气候研究所,德国52425; fe.klein@fz-juelich.de(F.K.); xi.tan@fz-juelich.de(X.T。); janina.ertmer@t-online.de(J.E。); j.w.coenen@fz-juelich.de(J.W.C.); ch.linsmeier@fz-juelich.de(c.l.); j.gonzalez@fz-juelich.de(J.G.-J.); m.bram@fz-juelich.de(m.b。); p.bittner@fz-juelich.de(p.b.); a.reuban@fz-juelich.de(A.R.)2等离子物理系,激光和血浆技术研究所,国家研究核大学Mephi,Kashirskoe Sh。,31,115409,俄罗斯莫斯科; ymgasparyan@mephi.ru 3材料科学与工程学院,Hefei技术大学,Hefei 230009,中国4日4000,根特大学应用物理系,9000 GHENT,BELGIUM 5,BELGIUM 5,WISCONSIN -WISCONSIN-麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学,美国6号WI 53706,美国6研究中心,美国6研究中心JülichGmbH,中央工程学院,电子与分析学院,德国52425Jülich; i.povstugar@fz-juelich.de 7不同的基础能源研究机构,荷兰20,5612 AJ Eindhoven; t.w.morgan@differ 8材料科学系,核物理与工程研究所,国家研究核大学Mephi,Kashirskoe sh。,31,115409,俄罗斯莫斯科; absuchkov@mephi.ru(a.s.); dmbachurina@mephi.ru(d.b.) 9 CCFE,英国原子能管理局,库勒姆科学中心,阿宾登OX14 3DB,英国; duc.nguyen@ukaea.uk(D.N.-M。); mark.gilbert@ukaea.uk(M.G。) 10材料科学与工程学院,华沙技术大学,沃斯卡141,02-507华沙,波兰; damian.sobieraj.dokt@pw.edu.pl(D.S.2等离子物理系,激光和血浆技术研究所,国家研究核大学Mephi,Kashirskoe Sh。,31,115409,俄罗斯莫斯科; ymgasparyan@mephi.ru 3材料科学与工程学院,Hefei技术大学,Hefei 230009,中国4日4000,根特大学应用物理系,9000 GHENT,BELGIUM 5,BELGIUM 5,WISCONSIN -WISCONSIN-麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学,美国6号WI 53706,美国6研究中心,美国6研究中心JülichGmbH,中央工程学院,电子与分析学院,德国52425Jülich; i.povstugar@fz-juelich.de 7不同的基础能源研究机构,荷兰20,5612 AJ Eindhoven; t.w.morgan@differ 8材料科学系,核物理与工程研究所,国家研究核大学Mephi,Kashirskoe sh。,31,115409,俄罗斯莫斯科; absuchkov@mephi.ru(a.s.); dmbachurina@mephi.ru(d.b.)9 CCFE,英国原子能管理局,库勒姆科学中心,阿宾登OX14 3DB,英国; duc.nguyen@ukaea.uk(D.N.-M。); mark.gilbert@ukaea.uk(M.G。)10材料科学与工程学院,华沙技术大学,沃斯卡141,02-507华沙,波兰; damian.sobieraj.dokt@pw.edu.pl(D.S.); Jan.wrobel@pw.edu.pl(J.S.W。)11材料公墓部,Poritary和Madrid Portarity Universal,C/Angure 3,E28040,西班牙马德里; Elena.tejad@upm.es 12等离子体研究所13 Group,Maltose-Str。,57482 Wend,德国; zoz@zoz.de(H.Z.); benz@zoz.de(H.U.B.)*校正:a.lidnovsky@fz-julik.de