在过渡到零排放总线时,对于操作员来说,为特定路线特征选择正确的技术很重要,以确保公交车的核心目的 - 安全地移动乘客,按时完成 - 无需妥协即可完成。简介公交行业正在脱碳重型车辆,欧洲一直是实施零排放巴士的领导者。在过去的20年中,进行了零排放总线,电池电动总线(BEB)和燃料电池电动总线(FCEB)进行的试验。多亏了这些试验和示威,零排放巴士的引入正成为欧洲城镇运输网络越来越频繁且重要的部分。现在,零排放总线被证明是实现净零目标的关键贡献者,许多城市是
抽象背景:质量指标经常用于衡量生命尽头的护理质量。在生命结束时,是否可以可靠地应用于常规收集的数据时,是否可以可靠地应用了潜在的过度处理的质量指标(即,当风险大于福利时)是否尚不确定。本研究旨在确定出版文献生命尽头过度治疗的质量指标,并在死于固体癌症的老年人中投入暂定的患病率。材料和方法:回顾性队列研究,包括所有老年人(65岁)在2013年1月1日至2015年12月31日在瑞典(N¼54,177)之间死于固体癌症的死者(65岁)。来自国家死亡原因的个人数据与总人口登记册,国家患者登记册和瑞典处方药登记册的数据有关。质量指标用于生命的最后一个和三个月。结果:从文献中确定的总共有145个质量指标中,有82(57%)在瑞典的常规行政和医疗保健数据中可能可操作。无法识别的程序和医院药物治疗是52%的被排除指标的原因。在82个可操作的指标中,有67个重叠概念。基于其余15个独特的指标,我们暂时估计,总体而言,约有三分之一的死者接受了至少一种治疗方法或程序,指示他们在生命的最后一个月中“潜在过度治疗”。结论:由于缺乏捕获护理程序的手段,瑞典的常规行政和医疗保健数据中,几乎一半的过度治疗指标无法衡量。我们的初步估计表明,潜在的过度治疗可能会影响死亡附近的癌症欺骗的三分之一。但是,应开发和验证常规收集数据的特定用途的潜在过度治疗的质量指标。
Kristina Kutukova 是德累斯顿 deepXscan GmbH 的 X 射线应用专家。她的职责包括开发和演示高分辨率 X 射线成像的广泛应用。Kristina Kutukova 于 2016 年在德国德累斯顿国际大学和俄罗斯托木斯克理工大学获得无损检测双硕士学位。她的博士论文针对微电子产品的机械坚固性,研究片上互连堆栈中的微裂纹扩展。5 年多来,她一直在德国德累斯顿弗劳恩霍夫陶瓷技术与系统研究所的微电子材料和纳米级分析系担任研究员。她的研究领域是高分辨率 X 射线成像,特别是为微电子和电池应用设计、开发和集成原位和操作设置到 X 射线显微镜和纳米 XCT 系统中。 Kristina Kutukova 是欧洲纳米分析研讨会科学委员会成员,该研讨会每年在欧洲材料研究学会 (E-MRS) 秋季会议期间举行。
正如Goldfein将军所建议的那样,赢得了胜利者的第一批推动者?第一个推动者在空间优势方面意味着什么?与俄罗斯和中国一起稳步提高了与美国竞争的空间能力,如果受到对手的威胁,空间在运营环境中最重要的领域对土地,空气,海上和网络空间领域有害。在与同伴对手发生冲突期间,一支美国特种部队团队在试图将高价值的目标(HVT)进行冲突时,以进行空袭。该操作的详细规划是为了保护团队在其运营领域使用的战略通信卫星。与敌人的视线无线电通信作为防守姿势的一部分,该团队试图通过卫星通信来呼吁HVT的位置。但是,他们无法发送报告,因为对团队未知,同伴对手否认了他们通过销毁高架通信卫星通过太空通信的能力。尽管对基于太空的能力进行了广泛的计划,并且基本上是关于联合军事行动中太空支持的“第一把手”,但对手仍然能够破坏和降低太空中的努力并夺取军事优势。美国面临着太空中同行竞争对手的多样化威胁,这已成为联合战士的最重要领域。1从全球定位系统(GPS)到弹道导弹防御系统,美国国家安全依靠基于太空的技术来获得和维持联合军事行动的优势。此外,太空领域的有争议和拥挤的性质与过时的国际政策相结合,例如《外在太空条约》不再保证美国将空间用作避难所,因为太空优势是中国政策目标之一。
1 A. Volta,Philos Trans 2 402(1800) 2 B. Scrosati,Journal of Solid State Electrochemistry 15,1623(2011) 3 EM Erickson、C. Ghanty 和 D. Aurbach,J. Phys. Chem. Lett. 5,3313(2014) 4 D. Aurbach、E. Zinigrad、Y. Cohen 和 H. Teller,Solid State Ionics 148,405(2002) 5 M. Dahbi、F. Ghamouss、F. Tran-Van、D. Lemordant 和 M. Anouti,J. Power Sources 196,9743(2011) 6 A. Manthiram、Y. Fu、S. Chung、C. Zu 和 Y. & Su,Chem. Rev. 114 , 11751 (2014) 7 P. Tan, HR Jiang, XB Zhu, L. An, CY Jung, MC Wu, L. Shi, W. Shyy, 和 TS Zhao Applied Energy 204 780 (2017) 8 S. Whittingham, Science 192, 1126 (1976)。 9 MN Obrovac,和 VL Chevrier,化学。 Rev. 114 , 11444 (2014) 10 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, JM Tarascon, Nature 407, 496 (2000) 11 JW Choi, D. Aurbach, Nat。马特牧师。 1, 16013 (2016) 12 MN Obrovac 和 VL Chevrier,化学。 Rev. 114 , 11444 (2014) 13 A. Casimir、H. Zhang、O. Ogoke、JL Amine、J. Lu 和 G. Wu, Nano Energy 27 , 359 (2016) 14 B. Liang、Y. Liu 和 Y. Xu, J. Power Sources 267 , 469 (2014) 15 M. Winter、JO Besenhard、ME Spahr 和 P. Novák, Adv. Mater. 10 , 725 (1998) 16 CK Chan、H. Peng、G. Liu、K. McIlwrath、XF Zhang、RA Huggins 和 Y. Cui, Nat. Nanotechnol. 3 , 31 (2008) 17 XH Liu, L.zhong, S. Huang, SX Mao, T. Zhu 和 JY Huang, ACS Nano 6, 1522 (2012) 18 JK Lee, KB Smith, CM Hayner 和 HH Kung, Chem. Commun ., 46 , 2025 (2010) 19 Y. Ma, R. Younesi, RJ Pan, CJ Liu, JF Zhu, BQ Wei, K. Edström, Adv.功能。马特。 26, 6797 (2016) 20 E. Greco 等人,J. Mater。化学。 A 5, 19306 (2017) 21 S. Palumbo 等人,ACS Appl。能源材料。 (2019)