主动系统采用近红外脉冲激光和快速门控探测器,目前已用于大多数远程成像应用。这一概念通常称为突发照明激光雷达或 BIL。SELEX 固态探测器基于 HgCdTe 雪崩光电二极管阵列和定制设计的 CMOS 多路复用器,用于执行快速门控和光子信号捕获。这些混合阵列产生的灵敏度低至 10 个光子,这主要是由于 HgCdTe 二极管中非常高且几乎无噪声的雪崩增益。激光门控成像的优势之一是将物体从背景中分割出来,从而提供信噪比优势。然而,在复杂的场景中,在伪装和隐蔽的情况下,系统的主要增强功能是能够生成 3D 图像。在这里,探测器逐个像素地感知范围以及激光脉冲强度,为每个激光脉冲提供深度背景。 3D 数据能够更有效地从背景杂波中提取物体。距离信息受过度对比度、相干性和闪烁效应的影响较小,因此图像比传统的 2D BIL 图像更清晰。在机载应用中,拥有 3D 信息尤其有用,可以在动态环境中提供距离选通的灵活反馈控制。本报告介绍了一些可用于生成 3D 信息的探测器技术以及导致选择 SELEX 探测器的论据
回报。使用武器需要准确识别敌方目标。美国空军增强型识别和传感激光雷达 (ERASER) ATD 旨在通过使用主动激光技术改进空中和地面目标的机载识别过程。该项目将集中于将 ERASER 激光和信号处理技术集成到试验机上进行飞行演示。ERASER 提供的目标识别将补充作战人员整体识别套件中的其他识别源。ERASER 将结合为地面目标识别开发的 2D 激光成像技术和 CID 算法。美国空军还将使用合成孔径和高距离分辨率技术改进空对地雷达成像 (AGRI) 战术雷达识别能力。海军打算开发一种利用多种目标信息源(合作和非合作)的复合 CID 能力。除了空军正在实施的 ERASER 和 AGRI 方法外,还有针对其他传感器模式(被动和主动)的相关自动目标识别 (ATR) 计划正在研究中;特别是替代合成孔径雷达 (SAR) ATR、特定发射器识别、精密电子支持测量和固态激光振动传感。美国海军非合作空中目标识别计划将演示基于多普勒的成像过程,以提供空中目标类别估计。美国海军沿海监视/移动目标识别计划将提供小型飞机成像的演示。美国海军激光 CID 项目使用激光测振、高距离分辨率 1D 剖面、2D 轮廓提取和依赖于优化激光源照射时独特目标反射率特征的技术。根据此 DTO,表面目标 ID 的退出标准是声明概率为 85%,识别置信概率为 98%。
回报。使用武器需要确定敌方身份。美国空军增强型识别和传感激光雷达 (ERASER) ATD 旨在通过使用主动激光技术改进空中和地面目标的机载识别过程。该计划的努力将集中在将 ERASER 激光和信号处理技术集成到试验机上进行飞行演示。ERASER 提供的目标 ID 将补充来自作战人员整体 ID 套件的其他 ID 源。ERASER 将结合为地面目标 ID 开发的 2D 激光成像技术和 CID 算法。美国空军还将使用合成孔径和高距离分辨率技术来提高空对地雷达成像 (AGRI) 战术雷达 ID 能力。海军打算开发一种综合 CID 能力,利用多种目标信息源(合作和非合作)。除了空军正在实施的 ERASER 和 AGRI 方法外,还有针对其他传感器模式(被动和主动)的相关自动目标识别 (ATR) 程序正在研究中;特别是替代合成孔径雷达 (SAR) ATR、特定发射器识别、精密电子支持测量和固态激光振动传感。美国海军非合作空中目标识别计划将演示基于多普勒的成像过程,以提供空中目标类别估计。美国海军沿海监视/移动目标识别计划将提供小型舰艇成像的演示。美国海军激光 CID 项目采用激光测振、高距离分辨率 1D 剖面、2D 轮廓提取以及依赖于优化激光源照射时独特目标反射率特性的技术。根据此 DTO,表面目标 ID 的退出标准是声明概率为 85%,识别置信概率为 98%。
近年来,已经出现了许多用于捕捉三维环境和物体的传感器系统。除了激光扫描仪和大地测量全站仪外,这里还必须列举立体视觉和基于三角测量的系统。特别是激光扫描仪在速度和准确性方面已成为最先进的技术,能够捕捉数十米大小的物体。激光扫描仪的主要缺点是它们的顺序操作模式。它们逐点测量。几年前,开发了一种功能齐全的新技术,能够同时以高分辨率捕捉环境。所谓的范围成像 (RIM) 或闪光激光雷达相机基于数字成像技术,并具有测量每个像素中相应物体点距离的能力。距离测量基于直接或间接飞行时间原理。由于其并行采集高达视频帧速率,RIM 相机甚至可以捕捉移动物体。就光学依赖性而言,可以得出所捕获场景的 3-D 坐标。距离测量的标称精度为几毫米。如果属性和特性变得稳定且可预测,RIM 可能成为许多应用的首选技术。例如,汽车、机器人和安全系统。标称坐标和测量坐标之间的显著偏差发生在几厘米的范围内。只有深入的研究才能帮助达到这里的理论极限。本论文讨论了影响 RIM 相机测量的几个方面。首先,简要介绍与 RIM 相关的基本技术。除了成像和距离测量方法外,RIM 还区分了两个基本原理。此外,重点放在特定的限制上。在这项工作期间,有三种不同的相机问世:瑞士 CSEM / MESA Imaging 的 SwissRanger SR-2 和 SR-3000,以及后来德国 PMDtec 的 3k-S。这三款相机基于间接飞行时间原理,配备了不同的复杂功能。除了集成的校准和校正功能外,抑制背景照明也是主要功能之一。但是,这些相机仅用于高度发达的演示。根据所需权利要求,对特定应用领域(如汽车或机器人)的适应性可产生专门的属性。对现有相机类型的分析有助于更深入地了解该技术。所分析相机的原始数据精度不超过几厘米。为了研究现有相机的属性,必须开发特殊的实验装置。这项工作的主要部分涉及 RIM 相机组件的研究和校准。通过摄影测量相机校准解决光学系统的几何偏差。根据偏差和统计数据分析距离测量系统。因此,指出了精度和准确度的局限性。除了散射效应的影响外,还讨论了积分时间、发射系统和入射角、目标反射率、外部和内部温度以及最终的线性度和固定模式噪声。此外,还介绍了一种系统校准过程的方法。由于影响参数的复杂性,尚未对各种影响参数的测量数据进行完整的校正。但高度系统的依赖关系预示着未来会出现复杂的校准程序。这项工作有助于理解传感器。