如果启用了英特尔软件包,请在没有英特尔软件包的情况下检查速度增加约20%(Rhodo类型),看来GCC版本略快。 GUI被放弃了,因为由于依赖关系而需要太多包裹。 ML-IAP避免了,因为发生了汇编误差。即使尝试GCC12,测试结果或速度也没有特殊差异。 N2P2是手动完成的,因为如果您在lammps中使用CMAKE指定自动构建,则会发生错误。在LAMMPS CMAKE的情况下,使用Python2是因为Python_executable等不会通过。因此,避免手动。
•如果您使用的是Winmostar V11.5.0或更高版本,并且使用64位环境,请安装和配置Cygwinwm 2023/04/05或更高版本。
Chemical Sciences Gromacs, LAMMPS, NAMD Climate & Environment Sciences MOM,Weather Research Forecasting model (WRF), COSMO Computational Fluid Dynamics OpenFoam, Tycho, Gerris flow Solver Computational Physics OOFEM Computational Sciences Gromacs, LAMMPS, NAMD,AMBER (open source) Data analytics RStudio, Apache Spark Geological Sciences Ferret
组件模型。这些分类从3到20组分的Sara(饱和,芳香族,树脂,沥青质)的任何地方。由于沥青分子的迁移率取决于各个分子之间的相互作用,因此使用各种不同的力场模型对组件模型进行建模。一个模拟的能量由动能和势能组成,可以使用力场来描述不同原子和分子之间的分子间力。可以使用许多不同的力场,但是一个常见的是凝聚相优化的原子模拟研究的分子潜力(Compass),并在lammps中实施。还有其他人,您不应该局限于任何特定的特定。
tadah!代码提供了一个多功能平台,用于开发和优化机器学习间的原子质潜力(MLIP)。通过集成综合描述符,它允许对系统交互的细微表示,并具有独特的截止函数和交互距离。tadah!支持贝叶斯线性回归(BLR)和内核脊回归(KRR),以增强模型的准确性和不确定性管理。关键特征是其超参数优化周期,迭代精炼模型体系结构以提高可传递性。这种方法结合了构图的限制,将预测与实验和理论数据保持一致。tadah!提供了一个用于LAMMP的接口,从而使MLIP在分子动力学模拟中的部署。它专为广泛的可及性而设计,支持桌面和HPC系统上的并行计算。tadah!利用模块化的C ++代码库,利用编译时间和运行时多态性来灵活性和效率。神经网络支持和预定义的粘结方案是潜在的未来发展,以及塔达!仍然对社区驱动的功能扩展开放。综合文档和命令行工具进一步简化了MLIP的开发和应用。
粗粒(CG)力场参数是使用真空中纤维素Iβ的原子分子动力学模拟得出的(0%的水分含量),并使用Gromacs软件[5]和CHARMM力场进行的水(95%水分含量)溶剂(95%的水分含量)[6]。72使用自下而上的粗粒方法将葡萄糖残基映射到一个CG位置:在存在水存在下,使用雨伞采样确定了100个纤维素表面之间的非键相互作用,以计算平均力的潜力(PMF)。势能被视为真空模拟中PMF的近似值,因为缺乏水减少了对自由能的熵贡献。使用Boltzmann倒置参数化键合的相互作用,以从与CG位点相对应的原子组之间的键长和角度的概率分布来计算PMF。使用LAMMPS软件进行了粗粒纳米纤维素组件的MD模拟[7]。进行了机械应力MD模拟,以确定具有强力场参数的CG纳米纤维素组件的拉伸模量,其水分含量为0%和95%。
形状记忆聚合物属于一类智能材料,能够响应特定的刺激,例如温度,电力或磁场。聚苯乙酮是脂肪族聚酯家族的可生物降解聚酯的一个例子,由于其独特的机械性能,与各种聚合物的兼容性和生物降解性,该脂肪酯家族已被广泛研究。在这项即将进行的研究中,已经添加了不同量的多丙酮酸酮,以研究其对由聚氨酯/聚氨酯/多丙烯酸酯/氧化石墨烯组成的智能聚合物纳米复合材料的热机械行为的影响。使用分子动力学仿真技术和LAMMPS软件,已评估了该设计的纳米复合材料的热,机械和原子特性。这项研究的结果表明,通过将多丙酮酸的含量从10%增加到50%,模型的纳米复合材料中的热通量和导热率从688.43增加到724.03 W/m 2,从0.85 w/m 2增加到0.85 w/m。此外,将多碳酸酯的数量从10%增加到50%,导致最终强度和研究的纳米复合材料的Young型模量从56.32增加到62.23 MPa,并从5.99增加到5.99 mpa,从5.99增加到6.29 MPa。随着多碳酸酯的量增加,均方根位移参数和玻璃过渡温度已收敛到0.31Å2和331 K。
*通讯作者,电子邮件:cyprian.mieszczynski@ncbj.gov.pl摘要摘要McChasy Code的主要目标是,通过模拟在Cryselline结构和crysefters cryselline cropters cryselline cropters和collesters的过程中,在通道(RBS/c)中记录了Rutherford反向散射光谱实验实验,该光谱实验是在频道/c/c中复制了。该代码的2.0版本提供了模拟大型频道的可能性(Ca.10 8原子)基于晶体学数据或分子动态(MD)计算而创建的任意结构。在这项工作中,我们介绍了代码的当前状态以及最近对镍(Ni)单晶形成的扩展结构缺陷(边缘位错和位错环)的研究结果。描述了两种建模扩展缺陷的方法:一种使用McChasy Code(PEIERLS-NABARRO方法)开发的,另一种是通过MD(LAMMPS代码)对Ni结构进行修改和热化获得的另一种。由局部弹丸 - 通量密度分布在缺陷周围进行了定性和定量研究。1。在过去的几十年中,许多组对不同材料的辐射缺陷进行了广泛的研究。许多作者[1-4]将卢瑟福的反向散射光谱(RBS/C)技术用作分析离子植入单晶的结构特性的标准方法[1-4]。不幸的是,缺乏适当的RBS/C光谱分析和过度简化方法的工具,通常会引起误导性结果。因此,开发一个适当的工具,可以分别针对在研究晶体中形成的各种缺陷进行详细的定量分析。McChasy V.1.0是在八十年代末在国家核研究中心开发的[5,6]。该代码的第一个版本的主要原理是通过模拟He-ions在内部旅行