大多数患者在寻求治疗时失去了最好的手术机会[3,4]。因此,确定结肠癌的新型诊断和治疗靶标对于增强其诊断和治疗以及改善患者预后至关重要。衰老代表对各种应力信号的细胞反应,可保护细胞免受不必要的伤害。在癌症的背景下,衰老具有双重功能:它通过抑制受损细胞的增殖而充当肿瘤抑制因子,同时通过促进炎症环境来促进癌症。此外,癌细胞也可以表现出衰老反应。这既提出了癌症顺序治疗的挑战和机会,然后利用衰老疗法进行了鼻溶疗法[5]。长的非编码RNA(LNCRNA)是一种超过200个核苷酸的非编码RNA。它通过调节基因表达而在生物学上发挥作用,并且对癌症的发展和进展至关重要[6]。lncRNA在调节结肠癌中的各种过程中发挥了重要作用,包括细胞增殖凋亡和细胞死亡,以及影响细胞周期迁移,能力,艾symal转变(T),癌症干细胞行为以及对结肠癌疗法的耐药性[7]。E2F1反应LncRNA LIMP27与P27 mRNA竞争与细胞质HNRNP0结合,选择性下调P27表达。这种相互作用会导致G0/G1相细胞周期,并促进缺乏p53的结肠腺癌细胞的增殖,肿瘤性和治疗性[8]。研究结肠腺癌中与衰老相关的LincrNA可以增强我们对这种癌症发作和进展的分子机制的理解,同时也为发展新的潜在干预策略铺平了道路。
使用现实世界数据了解治疗对健康相关结果的影响需要定义因果参数并施加相关识别假设,以将其转化为统计估计。半参数方法,例如目标最大似然估计器(TMLE),以构建这些参数的渐近线性估计器。要进一步建立这些估计量的渐近效率,必须满足两个条件:1)数据可能性的相关组成部分必须属于Donsker类,而2)2)滋扰参数的估计值在其真实值的速度上以比N -1 /4更快的速度收敛。高度适应性的拉索(HAL)通过在具有有界分段变化标准的Càdlàg函数中充当经验风险最小化来满足这些标准,已知是Donsker。hal达到了所需的收敛速度,从而保证了估计量的渐近效率。HAL最小化其风险的功能类别具有足够的灵活性,可以捕获现实的功能,同时保持建立效率的条件。此外,HAL可以对非方向可区分参数(例如条件平均治疗效果(CATE)和因果剂量响应曲线,对精确健康很重要。尽管在机器学习文献中经常考虑这些参数,但这些应用通常缺乏适当的统计推断。HAL通过提供可靠的统计不确定性量化来解决这一差距,这对于健康研究中的知情决策至关重要。