潜在扩散模型(LDM)在图像生成中实现了最先进的性能,但提高了版权和隐私问题。对LDM的对抗性攻击是为了保护未经授权的图像免于在LDM驱动的几弹性生成中使用。但是,这些攻击遭受了中等的表现和过度的计算成本,尤其是在GPU内存中。在本文中,我们提出了对LDM的有效对抗性攻击,该攻击表现出了针对最先进的LDM的最先进的发电管道的卓越性能。我们通过引入多种机制并将攻击的内存成本降低到小于6GB,以记忆效率实现攻击,这使各个用户可以对大多数消费者GPU进行攻击。我们提出的攻击可能是面临LDM为保护自己带来的版权和隐私风险的人们的实用工具。
从人类大脑活动中重建视觉体验提供了一种独特的方式来理解大脑如何表征世界,并解释计算机视觉模型和我们的视觉系统之间的联系。虽然深度生成模型最近已被用于这项任务,但重建具有高语义保真度的真实图像仍然是一个具有挑战性的问题。在这里,我们提出了一种基于扩散模型 (DM) 的新方法来重建通过功能性磁共振成像 (fMRI) 获得的人脑活动图像。更具体地说,我们依赖于称为稳定扩散的潜在扩散模型 (LDM)。该模型降低了 DM 的计算成本,同时保留了其高生成性能。我们还通过研究 LDM 的不同组成部分(例如图像 Z 的潜在向量、条件输入 C 和去噪 U-Net 的不同元素)与不同大脑功能的关系来描述 LDM 的内部机制。我们证明了我们提出的方法可以重建高分辨率图像,保真度高,直
AudioLDM 设计概览,用于文本到音频生成(左)和文本引导的音频处理(右)。在训练期间,潜在扩散模型 (LDM) 以音频嵌入为条件,并在 VAE 学习的连续空间中进行训练。采样过程使用文本嵌入作为条件。给定预训练的 LDM,零样本音频修复和风格迁移以反向过程实现。前向扩散块表示用高斯噪声破坏数据的过程(参见公式 2)。来源:arXiv (2023)。DOI:10.48550/arxiv.2301.12503
流形潜在因子和神经观测之间的关系用带有 MLP 编码器和解码器网络的自动编码器 154 建模,其中流形潜在因子是瓶颈 155 表示。从神经观测到流形潜在因子的虚线仅用于 156 推理,不是生成模型的一部分。动态和流形潜在因子共同形成 157 LDM,其中流形因子是动态因子的噪声观测,构成 158 LDM 状态。动态潜在因子的时间演变用线性动态 159 方程描述。所有模型参数(LDM、自动编码器)都是在单次优化中联合学习的,通过最小化未来神经观测与过去的预测误差。在无监督 161 版本中,在训练 DFINE 模型之后,我们使用映射器 MLP 网络来学习 162 流形潜在因子和行为变量之间的映射。我们还扩展到监督式 DFINE,其中映射器 MLP 网络与所有其他模型参数同时进行训练,以达到优化效果,现在可以最小化神经和行为预测误差(方法)。(b)显示了使用 DFINE 的推理过程。我们首先使用每个时间点的非线性流形嵌入来获得流形潜在因子的噪声估计。借助动态方程,我们使用卡尔曼滤波来推断动态潜在因子 𝐱𝐱 𝑡𝑡|𝑘𝑘 并改进我们对流形潜在因子 𝐚𝐚 𝑡𝑡|𝑘𝑘 的估计,下标为
所提出的StableVSR建立在单个图像超分辨率(SISR)的预训练潜在扩散模型(LDM)上。我们使用稳定的扩散×4上放大器(SD×4 Upscaler)4。它遵循LDM框架[14],该框架将迭代精炼过程执行到潜在空间中,并使用VAE解码器D [7]将潜伏期解码为RGB图像。从低分辨率的RGB图像LR(条件图像)和初始嘈杂的潜在X t开始,使用denoising Unet ϵθ用于通过迭代改进过程生成高分辨率对应物。在此过程中,从LR引导的X t逐渐消除了噪声。在定义数量的采样步骤之后,使用VAE解码器D [7]将获得的潜在X 0解码为高分辨率的RGB图像HR。所获得的图像HR的分辨率比低分辨率图像LR高的分辨率高,因为D执行×4升级。实际上,低分辨率的RGB图像LR和初始噪声潜在X t沿通道尺寸加入并输入到denoising unet中。
轨道数据消息 (ODM):星历表消息 (OEM)、综合消息 (OCM) O/O 联系信息 OCM;可以使用空间数据标准用户配置文件消息 O/O 卫星特性 ODM;+ 卫星目录消息以获取更多信息 O/O 机动计划 ODM:轨道参数消息 (OPM) 和 OCM 卫星标识 ODM:可以使用自由文本字段 部署时间表 ODM:OCM 包括部署时间字段 发射轨迹 ODM 卫星特性数据 ODM:OCM 或可在标准可用时合并到 LDM DOC/商业状态向量 ODM:OPM DOC/商业元素集 ODM:OMM 再入评估 再入数据消息 (RDM)
随着基于扩散的[12,41]文本到图像生成技术的进步,一系列单条件可控的生成框架(例如ControlNet [58],T2-IADAPTER [30],IP-ADAPTER [57]和INSTANTID [46]和INTSTANTID [46]已经扩展了控制信号的范围,该框架已扩展了从字体提示中扩展了控制信号的范围。它允许用户控制生成的图像的更详尽的方面,例如布局,样式,特征等。这些常规方法是专门为UNET [37]主骨的主干(LDM)[36]设计的,具有专用的控制网络。此外,最近的一些方法,例如Imini-Control [44],将控制信号集成到扩散变压器(DIT)[7,22]体系结构中,它们与LDM中的UNET相比表现出了出色的性能。尽管上述方法达到了有希望的单条件性能,但多条件可控生成的挑战仍未解决。以前的多条件生成方法(例如Uni-Control [34]和Unicontrolnet [59]通常依赖于处理诸如Chany或Depth Maps之类的空间条件,并且无法适应受试者条件,从而导致适用的情况有限。尽管最近提出的CTRL-X [26]具有控制结构和外观,但其性能并不令人满意,并且仅支持有限的条件组合。因此,统一框架需要以多条件生成的方式包含这些生成任务。通过集成多个pre-此外,我们假设许多现有的生成任务可以被视为多条件的一代,例如虚拟试验[5,16],对象插入[3,50],样式传输[14,32,51],空间分配的自定义[19,20,24,26]等该框架应确保与所有输入约束的一致性,包括主题ID保存,空间结构对齐,背景连贯性和样式均匀性。为了实现这一目标,我们提出了Unicombine,这是一个提供多个关键范围的能力和通用框架:首先,我们的框架能够同时处理任何条件组合,包括但不限于文本提示,空间图和下图图像。具体来说,我们引入了一种新颖的条件MMDIT注意机制,并结合了可训练的DeNoisis-Lora模块,以构建无训练和基于培训的版本。
扩散模型(DM)已成为最先进的模型,因为它们在没有对抗性训练的情况下从噪音中产生高质量图像的能力。但是,正如最近的研究报道的那样,它们容易受到后门攻击的影响。数据输入(例如,一些高斯噪声)用扳机盖章(例如,一个白色补丁),后do的模型始终生成目标图像(例如,一张不正确的照片)。但是,从DMS中减轻后门的有效防御策略没有充满反感。为了弥合这一差距,我们提出了第一个DMS的后门检测和重新移动框架。我们在包括DDPM,NCSN和LDM在内的数百多种DM上评估了我们的框架E Li -Jah,并使用13个采样器对3个现有的后门攻击进行了评估。广泛的实验表明,我们的方法可以接近100%的检测准确性,并将后门效应降低至接近零,而无需显着牺牲模型效用。
生成的AI模型,例如稳定的扩散,DALL-E和MIDJOURNEY,最近引起了广泛的关注,因为它们可以通过学习复杂,高维图像数据的分布来产生高质量的合成图像。这些模型现在正在适用于医学和神经影像学数据,其中基于AI的任务(例如诊断分类和预测性建模)通常使用深度学习方法,例如卷积神经网络(CNNS)和视觉变形金刚(VITS)(VITS),并具有可解释性的增强性。在我们的研究中,我们训练了潜在扩散模型(LDM)和deno的扩散概率模型(DDPM),专门生成合成扩散张量张量成像(DTI)地图。我们开发了通过对实际3D DTI扫描进行训练以及使用最大平均差异(MMD)和多规模结构相似性指数(MS-SSSIM)评估合成数据的现实主义和多样性来生成平均扩散率的合成DTI图。我们还通过培训真实和合成DTI的组合来评估基于3D CNN的性别分类器的性能,以检查在培训期间添加合成扫描时的性能是否有所提高,作为数据增强形式。我们的方法有效地产生了现实和多样化的合成数据,有助于为神经科学研究和临床诊断创建可解释的AI驱动图。
承认该项目的成功和结果是许多人的指导和支持。我们特别想强调K.C.博士提供的常规支持和反馈。badatya(首席总经理)及其在Nabard的同事,包括Vinod Vidyarthi博士(总经理),Sohan Premi博士(副总经理),Anshumala女士(助理经理)和其他尊敬的经济分析和研究部(DEAR)和公司计划部(CPD)的研究及其在整个过程中的研究,以期为他们提供了整个过程,以期为他们提供了整个研究,以期为他们提供了整个过程的研究,以便在整个过程中进行了研究。我们还要感谢州和地区一级利益相关者在阿萨姆邦,安得拉邦,马哈拉施特拉邦,拉贾斯坦邦和北方邦提供的鼓励和支持,以将我们纳入他们的繁忙日程和有用的建议。我们还要感谢来自阿萨姆邦,安得拉邦,马哈拉施特拉邦,拉贾斯坦邦和北方邦的州仓库公司和农业营销委员会的官员。此外,我们还要感谢Baksa,Dhemaji,Anantapur,Krishna,Nagpur,Solapur,Solapur,Pali,Churu,Meerut,Meerut和Kaushambi的DDM和LDM,以便我们与他们交谈以更好地了解该计划。