1 华沙医科大学核医学系,02-091 华沙,波兰;leszek.krolicki@wum.edu.pl(LK);jolanta.kunikowska@wum.edu.pl(JK) 2 巴塞尔大学医院神经外科系,4031 巴塞尔,瑞士;dominik.cordier@usb.ch 3 伯尔尼大学医院 Inselspital 神经内科系,3010 伯尔尼,瑞士;nedelina.slavova@gmail.com 4 精神病学和神经病学研究所神经外科系,02-957 华沙,波兰;henryk.koziara@gmail.com 5 欧洲委员会联合研究中心 (JRC),76125 卡尔斯鲁厄,德国;frank.bruchertseifer@ec.europa.eu (FB); alfred.morgenstern@ec.europa.eu (AM) 6 核医学与放射化学,巴塞尔大学医院,4031 巴塞尔,瑞士 7 伯尔尼与巴塞尔大学神经外科系,4001 巴塞尔,瑞士 * 通信地址:adrian.merlo@bluewin.ch
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 1 月 21 日发布。;https://doi.org/10.1101/2025.01.21.634116 doi:bioRxiv preprint
摘要 — 神经心理学研究表明,不同大脑功能区域之间的合作活动推动了高级认知过程。为了了解大脑不同功能区域内和之间的大脑活动,我们提出了一种新型神经学启发式图神经网络 LGGNet,用于学习脑机接口 (BCI) 的脑电图 (EEG) 的局部-全局图表示。LGGNet 的输入层由一系列具有多尺度 1D 卷积核和内核级注意力融合的时间卷积组成。它捕获 EEG 的时间动态,然后将其作为所提出的局部和全局图过滤层的输入。LGGNet 使用一组定义的具有神经生理学意义的局部和全局图,对大脑功能区域内和之间的复杂关系进行建模。在稳健的嵌套交叉验证设置下,在三个公开可用的数据集上对四类认知分类任务(即注意力、疲劳、情绪和偏好分类任务)评估了所提出的方法。 LGGNet 与 DeepConvNet、EEGNet、R2G-STNN、TSception、RGNN、AMCNN-DGCN、HRNN 和 GraphNet 等最先进的方法进行了比较。结果表明,LGGNet 的表现优于这些方法,并且在大多数情况下,改进具有统计意义(p < 0.05)。结果表明,将神经科学先验知识引入神经网络设计可以提高分类性能。源代码可以在 https://github.com/yi-ding-cs/LGG 找到
1 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院费城儿童医院儿科肿瘤科;2 美国伊利诺伊州芝加哥安与罗伯特 H. 卢里儿童医院;3 澳大利亚新南威尔士州兰德威克悉尼儿童医院儿童癌症中心;4 澳大利亚新南威尔士州悉尼新南威尔士大学洛伊癌症研究中心儿童癌症研究所;5 澳大利亚新南威尔士州悉尼新南威尔士大学临床医学院;6 美国华盛顿特区儿童国家医院;7 丹麦哥本哈根哥本哈根大学医院 - Rigshospitalet 儿科和青少年医学部;8 荷兰乌得勒支马克西玛公主儿科肿瘤中心;9 澳大利亚昆士兰州南布里斯班昆士兰儿童健康医院和健康服务中心; 10 瑞士苏黎世大学儿童医院肿瘤科;11 美国纽约州纽约市纽约大学朗格尼健康中心;12 加拿大魁北克省魁北克市拉瓦尔大学儿童太阳中心儿科;13 美国加利福尼亚州旧金山市加利福尼亚大学神经内科、神经外科和儿科系;14 美国加利福尼亚州布里斯班 Day One Biopharmaceuticals;15 美国北卡罗来纳州达勒姆市杜克大学
脑肿瘤的语义分割是医疗治疗计划中的重要阶段。由于肿瘤的特性,图像分割的主要困难之一是类别之间的严重不平衡。此外,类别不平衡的数据集是多模态3D脑MRI中常见的问题。尽管存在这些问题,但大多数脑肿瘤分割研究仍然偏向于过度代表的肿瘤类别(多数类别),而忽略了小规模的肿瘤类别(少数类别)。在本文中,我们提出了一种基于3D U-Net的改进损失函数加权焦点损失(WFL),以增强脑肿瘤分割的预测。使用我们提出的损失函数(WFL)通过给予少数类较高的权重和给予多数类较低的权重来解决类别之间的不平衡和权重之间的不平衡。在将这些权重分配给不同的像素值后,我们的工作能够解决像素退化问题,这是模型训练期间损失函数的局限性之一。根据我们的实验,在脑肿瘤分割挑战赛 (BraTS) 2019 数据集中,针对高级别胶质瘤 (HGG) 和低级别胶质瘤 (LGG) 的 3D U-Net 模型上,提出的函数 (WFL) 对肿瘤核心 (TC)、整个肿瘤 (WT) 和增强肿瘤 (ET) 显示出良好的结果,其中 HGG 的平均骰子分数为:0.830、0.913、0.815,LGG 的骰子分数为 TC:0.731、WT:0.775 和 ET:0.685。此外,我们在 BraTS 2020 上部署了训练,获得了平均 Dice 分数 HGG:TC:0.843、WT:0.892、ET:0.871,以及 Dice 分数 LGG:TC、WT 和 ET 分别为 0.7501、0.7985、0.6103。
摘要:多模态 MRI 的自动脑肿瘤分割在辅助胶质母细胞瘤和下脑胶质瘤的诊断、治疗和手术方面发挥着重要作用。在本文中,我们提出应用 AWS SageMaker 框架中实现的几种深度学习技术。不同的 CNN 架构经过调整和微调,以达到脑肿瘤分割的目的。对实验进行评估和分析,以获得所创建模型的最佳参数。所选架构在公开的 BraTS 2017-2020 数据集上进行训练。分割区分了背景、健康组织、整个肿瘤、水肿、增强肿瘤和坏死。此外,还提出了一种随机搜索参数优化的方法,以进一步改进获得的架构。最后,我们还计算了由所述六个模型的加权平均值创建的集成模型的检测结果。集成的目标是改善肿瘤组织边界的分割。我们的结果与 BraTS 2020 竞赛和排行榜进行了比较,根据骰子分数的排名,我们的结果位列前 25%。
• Thirupathi P(质量保证工程师):拥有 6 年经验的工程师,精通 AS 和 ISO 质量标准。出厂质量保证工程师,RVB Shourlube Industries Private Ltd. 坎普尔。
