“知识图”一词自1972年以来就已经存在,但是当前的定义可以追溯到2012年的Google。随后是Airbnb,Amazon,Ebay,Facebook,IBM,LinkedIn,Microsoft和Uber等公司的类似公告,从而导致各种行业采用知识图(KG)。因此,近年来,该领域的学术研究激增,关于KGS的科学出版物越来越多[1]。这些图是利用基于图的数据模型来有效地管理,集成和提取来自大型和多样化数据集的宝贵见解[2]。kgs是结构化知识的存储库,组织成三联的集合,被指定为𝐾𝐺=(ℎ,𝑟,𝑡)⊆×𝑅×𝐸×𝐸×𝐸,其中e代表实体集,r代表关系的集合[1]。在图中,节点表示各个层次,实体或概念。这些节点包括各种类型,包括人,书籍或城市,并与位于,生活或与之合作之类的关系相互联系。kg的本质融合了多种类型的关系,而不是仅限于单一类型。kg的总体结构构成了一个实体网络,其语义类型,属性和互连。因此,构建kg需要有关
尽管最近大语言模型(LLM)的扩散,但他们的培训配方 - 模型架构,培训数据和优化算法 - 通常非常相似。这自然提出了所得模型之间相似性的问题。在此过程中,我们提出了一个新颖的设置,虚构的问题回答(IQA),以更好地理解模型相似性。在IQA中,我们要求一个模型生成纯粹的虚构问题(例如,在物理学中的完全构成概念上),并促使另一个模型回答。令人惊讶的是,尽管这些问题完全是虚构的,但所有模型都可以以显着的一致性来回答彼此的问题,这表明了这些模型在此类幻觉中运行的“共同想象空间”。我们对这种现象进行了一系列研究,并讨论了这种模型均匀性对幻觉检测和计算创造力的含义。我们将在公共网站上发布并维护代码和数据。
大语言模型(LLMS)创造了令人兴奋的可能性,以加速材料科学中的科学发现和知识传播。虽然LLM已成功地用于选择科学问题和基本挑战,但他们目前不属于实用的材料科学工具。从这个角度来看,我们在材料科学中显示了LLM的相关故障案例,这些案例揭示了与理解和推理有关复杂,相互联系的材料科学知识的当前局限性的局限性。鉴于这些缺点,我们概述了建立基于域知识的材料科学LLM(Matsci-llms)的框架,该框架可以实现假设产生,然后进行假设检验。在很大程度上,获得表现型Matscilms的途径在于构建源自科学文献中采购的高质量的多模式数据集,其中各种信息提取挑战持续存在。因此,我们描述了关键材料科学信息提取挑战,这些挑战需要克服,以构建大规模的多模式数据集,以捕获有价值的材料科学知识。旨在实现解决这些挑战的连贯努力,我们概述了通过六个互动步骤将Matsci-llms应用于现实世界材料发现的路线图:1。材料查询; 2。数据检索; 3。材料设计; 4。Insilico评估; 5。实验计划; 6。实验执行。最后,我们在可持续性,包容性和政策制定方面讨论了Matscillms对社会的一些广泛含义。
近年来,NLP模型的快速发展主要是通过Google和多伦多大学研究人员开发的变压器体系结构[2] B。变压器体系结构最初用于翻译语言,但是由于其出色的计算性能(通过并行处理所有输入),而不是先前使用的体系结构,因此在几种情况下已经探索了它。此外,由于它在独特的下游应用程序中取得了成功(文本摘要,自动完成,聊天对话生成等。),多年来NLP模型中的参数数量迅速增加,如图1所示。该图显示了自2017年以来模型大小的演变,从变压器模型开始于2017年6月Google宣布的6500万参数。使用虚线描绘了大于1万亿的型号。我们包含的最大模型可以实现以上的参数大小,因为它们使用稀疏激活的结构,在推断期间,只有LLM的一部分神经元的一部分被激活,而不是全部。但是,它们的广泛采用受到复杂性,沟通成本和培训不稳定性等因素的阻碍[15]。尽管存在这些障碍,但它们的建筑设计应被视为未来模型缩放的有力候选人。此外,诸如GPT-4和Gemini之类的模型以其多模式功能而闻名,这不仅可以处理文本,还可以处理诸如Image,Video和Audio之类的视觉和听觉输入。图1基于参考文献[1]中的信息。
摘要:除了(Little)Openai可能对我们隐瞒的内容外,我们都知道(粗略地)大型语言模型(LLM)(例如ChatGpt)工作(其庞大的文本数据库,统计数据,矢量表示和大量参数,下一个单词培训等)。但是,我们当中没有人能说(衷心地),我们对Chatgpt所证明的能力对这些资源的作用并不感到惊讶。这甚至驱使我们中的一些人得出结论,Chatgpt实际上理解了。它不正确。,但我们了解它如何做能做的事情也不正确。我会建议一些有关良性“偏见”的预感 - 在LLM量表上出现的会议约束可能会帮助ChatGpt的表现比我们预期的要好。这些偏见是语言本身,LLM量表的本质上固有的,它们与Chatgpt缺乏的是紧密相关的,这是直接的感觉运动接地,可以将其单词与引用者及其命题联系起来。这些收敛性偏见与(1)间接言语基础在直接感觉运动基础上的寄生虫有关,(2)语言定义的循环,(3)语言生产和理解的“镜像”,(4)在LLM量表上以LLM量表的命题中的标志性,((5)人类的“人类知识)”,也许是“类别”的“类别”。乔姆斯基的猜想是关于思想定律。博览会将以与Chatgpt-4的对话形式。
领先的大型语言模型(LLMS)接受了公共数据的培训。但是,世界上的大多数数据都是黑数据,主要是以私人组织数据或企业数据的形式公开访问。我们表明,在现实世界企业数据集上测试时,基于LLMS的方法的性能严重降低。基于公共数据的当前基准测试高估了LLM的性能。我们发布了一个新的基准数据集,即Goby Benchmark,以提高企业数据的发现。根据我们在该企业基准的经验,我们提出了提高LLM在启动数据上的性能的技术,包括:(1)层次结构注释,(2)运行时类学习和(3)本体学合成。我们表明,一旦这些技术部署了这些技术,企业数据的性能就与公共数据的性能相当。可以在https://goby-benchmark.github.io/上获得Goby基准测试。
摘要 - LARGE语言模型(LLMS)为对话AI的发展做出了明显的贡献,并且具有巨大的潜力,可以帮助各种AREAS的科学研究。本文试图解决以下问题:当前的生成预先训练的变压器(GPT)为嘈杂的中间规模量子(NISQ)技术的发展提供了哪些机会?此外,即将到来的GPT发电以推动耐断层量子计算(FTQC)中的研究边界具有哪些潜力?在本文中,我们实施了QGAS模型,该模型可以迅速提出有希望的Ansatz架构,并通过包括量子化学和量子融资任务在内的应用基准进行评估。我们的结果表明,经过有限数量的及时指南和迭代,我们可以获得高性能的ANSATZ,能够产生可比较的结果,这些结果通过最先进的量子体系结构搜索方法实现。这项研究提供了一个简单的概述,概述了GPT在支持量子计算研究方面的能力,同时强调了当前GPT的局限性。此外,我们在量子研究中讨论了LLM的未来派应用程序。索引术语 - LARGE语言模型,量子计算
在接下来的几年中,软件开发将会改变。gen-generative ai(人工智能),主要是通过机器学习LLM(大型语言模型)用于协助计划任务。从与生成AI代理的配对编程到自动生成代码,对其进行解释或生成测试套件,全球正在探索新的编码方式。如果这项新技术的承诺提供了,我们可以期望软件的开发和维护方式发生了根本性的变化,并且生成AI的参与更加激烈。同样在几年内,与计算机交互的主要接口可能会发生变化。更轻巧,更强大,更强大但更少的能源消耗的虚拟和增强现实设备有望开发,从而导致具有常规眼镜的外形,台式机的计算能力以及手机的连接性的设备。如果这种趋势实现,与计算机交互的首选平均值可能为XR(扩展现实)。