LRRK2致病变体的载体显示出一个温和的,1个帕金森氏病的解剖学上不同的大脑签名2 3 Kopal,Jakub 1,2; VO,Andrew 3; Tao,QIN 3,Simuni,Tanya 4; Chahine,Lana M. 5; Bzdok,4 Danilo 2,3,6*; Dagher,Alain 3,7* 5 1 1精神病学中心,心理健康与成瘾司,奥斯陆临床6医学研究所,奥斯陆大学,奥斯陆,奥斯陆大学,挪威7 2 2 2美国西北大学Feinberg医学院神经病学,美国12 IL,美国13 5 5 5 LRRK2基因变体是家族性和零星19帕金森氏病(PD)的主要遗传危险因素,为该疾病的机制和20种潜在疗法打开了无人看管的窗口。研究致病性变异在LRRK2基因对21大脑结构的影响是实现早期诊断和个性化治疗的关键步骤。22然而,尽管具有重要意义,但LRRK2基因型影响大脑结构的方式23仍未探索。在该领域的工作受到小样本量和队列组成的24个差异的困扰,这可能会掩盖临床25个亚组之间的真实区别。我们33进一步分析了脑脊液34和萎缩中骨骼α-核蛋白之间的关系。在这项研究中,我们通过结合显式26人口背景变化和模式匹配来克服如此重要的局限性。具体来说,我们27个利用了大量的641名参与者(包括364名具有PD诊断的参与者),以检查28种与LRRK2致病变体有关的MRI可检测性皮质萎缩模式,其中29名PD和非术中的人。LRRK2 PD患者表现出较轻的皮质30稀疏,在颞和枕骨31个区域中具有显着保存,表明神经变性的模式明显。非操纵LRRK2载体32没有明显的皮质萎缩,表明没有亚临床PD的结构迹象。我们发现那些有骨骼α-突触核蛋白的证据的人会经历35个明显的神经变性并增加皮质稀疏,可能会定义另外36个攻击性的PD亚型。我们的发现重点介绍了区分PD亚型的途径,37可以导致更具针对性的治疗方法以及对帕金森氏病进展的38个理解。39
沉积单钠和焦磷酸钙(MSU和CPP)微晶体负责痛风和软骨钙化中的疼痛和复发性炎症。在这些病理学中,炎症反应是由于巨噬细胞的激活引起的,负责释放包括IL-1β在内的各种细胞因子。IL-1β的成熟是由多蛋白质NLRP3插度介导的。在这里,我们发现晶体通过晶体的激活和IL-1β的同时产生的激活取决于细胞体积通过激活OSMO敏感的LRRC8阴离子通道的调节。LRC8的药理抑制和遗传沉默消除了晶体在体外和晶体诱导的胞内肿块模型中的浮游性激活。MSU/CPP晶体暴露时LRRC8激活诱导ATP释放,P2Y受体的激活和NLRP3炎性流向膜体激活和IL-1β成熟所必需的细胞内钙升高。在关节晶体诱导的炎症的背景下,我们确定了LRRC8 OSMO敏感的阴离子Channels具有病理生理相关性的功能。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年12月22日。 https://doi.org/10.1101/2024.06.06.597807 doi:biorxiv preprint
LRRK2,富含亮氨酸重复激酶 2;PD,帕金森病 KO,基因敲除;DQ-BSA,染料淬灭牛血清白蛋白 a. Dehey 等人,2013 年。帕金森病中的溶酶体损伤;b. R. Wallings 等人,2019 年;c. Henry 等人,2015 年 2023 年 Keystone 峰会上展示的数据:自噬和神经退行性疾病;图片:Marwaha 和 Sharma,Bio-protocol,2017 年
作为社区生活管理局下属的主要研究机构,国家残疾、独立生活和康复研究所 (NIDILRR) 的使命是产生新知识并促进其有效利用,以提高残疾人士在社区中从事自己选择的活动的能力,以及扩大社会为残疾人士提供充分机会和便利的能力。NIDILRR 和 ACL 的其他项目共同努力实现 ACL 的首要使命:最大限度地提高老年人和残疾人及其家人和护理人员的独立性、福祉和健康。NIDILRR 创建资源和干预措施来支持由 ACL 的其他项目资助的工作,并且 NIDILRR 的研究重点由这些项目提供的有关残疾人需求的关键信息决定。因此,ACL 项目的总体影响大于每个项目独立实现的总和。
抽象的特发性帕金森氏病(PD)在流行病学上与接触毒物(例如农药和溶剂)相关,其中包括各种污染我们环境的化学物质。大多数在结构上是不同的,但其毒性的常见细胞靶标是线粒体功能障碍,这是多巴胺能神经元选择性脆弱性涉及的关键病理触发因素。我们和其他人表明,环境线粒体毒物(例如农药烤面包酮和paraquat)以及有机溶剂溶剂三氯乙烯(TCE)似乎受到蛋白质LRK2的影响,蛋白质LRK2是PD的遗传危险因素。作为LRRK2介导囊泡运输并影响内溶性功能,我们假设LRRK2激酶活性可能会抑制毒性受损的线粒体的自噬去除,从而导致氧化应激升高。相反,我们怀疑对LRRK2的抑制作用,该抑制已被证明是针对由线粒体毒物引起的多巴胺能神经变性的,它将减少活性氧(ROS)的细胞内产生,并防止导致细胞死亡的线粒体毒性。为此,我们在体外测试了如果遗传或药物抑制LRRK2(MLI2),则可以抵抗与PD风险相关的四种毒物引起的ROS - Rotenone,paraquat,paraquat,tce和四氯乙烯(PERC)。同时,我们评估了MLI2抑制LRRK2是否可以预防体内TCE诱导的毒性,在我们观察到的TCE升高LRRK2激酶在多巴胺神经化学剂之前的Nigrostriatal段中的LRRK2激酶活性。我们发现LRRK2抑制作用阻止了毒物诱导的ROS并在体外促进线粒体,并保护了多巴胺能神经退行性变性,神经炎症和由TCE在体内引起的线粒体损害。我们还发现,具有LRRK2 G2019S突变的细胞显示出加重的毒物诱导ROS的水平,但通过MLI2抑制LRRK2,这可以改善。总的来说,这些数据支持LRRK2在毒物诱导的线粒体功能障碍中的作用,该功能通过氧化应激和自噬去除受损的线粒体而与PD风险相关。关键字:帕金森氏病(PD),基因X环境(GXE),环境有毒物质,亮氨酸富集重复激酶2(LRRK2),线粒体
细胞LRRK2激酶活性是使用Invitrogen的Lanthascreen技术测量的。SH-SY5Y神经母细胞瘤细胞用HG2019S或HWT LRRK2转染。 在小鼠成纤维细胞3T3细胞系中测量 LRRK2 PS935/总LRRK2比,以评估LRRK2激酶抑制。 OPM-383报告了细胞IC50值(NM)。 使用辐射蛋白激酶测定(Panqinase®活性测定)来测量所选蛋白激酶面板的激酶活性。 OPM-383溶解在1%DMSO的适当矩阵中。 在细胞色素P450抑制分析中研究了七个主要的细胞色素P450同工型(CYP1A,CYP2B6,CYP2B6,CYP2C8,CYP2C9,CYP2C9,CYP2C19,CYP2D6和CYP3A4)。 OPM-383溶解在1%Tween 80和1%HPMC中,并通过口服途径给药。 在给药后,在不同时间处死啮齿动物。 使用LC/MS-MS方法对OPM-383进行了定量。 OPM-383(5 µM)脑中的蛋白结合在4H使用UPLVC/MS-MS孵育后进行分析。 在英国Cyprotex评估了体外代谢,渗透性和蛋白质结合的体外代谢。 HERG研究是在Cerep进行的;法国。 OPM-383溶解在1%Tween 80中,1%HPMC溶于水中,并通过口头途径以50 mg/kg的速度进行CD1。 在给药后九十分钟后,迅速剖析了小鼠,并在液氮中迅速解剖血液,脑和肾脏。 用于免疫印迹程序,使用针对PS935和总LRRK2的抗体。 MC-38细胞被接种到C57BL/6小鼠中。SH-SY5Y神经母细胞瘤细胞用HG2019S或HWT LRRK2转染。LRRK2 PS935/总LRRK2比,以评估LRRK2激酶抑制。细胞IC50值(NM)。使用辐射蛋白激酶测定(Panqinase®活性测定)来测量所选蛋白激酶面板的激酶活性。OPM-383溶解在1%DMSO的适当矩阵中。在细胞色素P450抑制分析中研究了七个主要的细胞色素P450同工型(CYP1A,CYP2B6,CYP2B6,CYP2C8,CYP2C9,CYP2C9,CYP2C19,CYP2D6和CYP3A4)。OPM-383溶解在1%Tween 80和1%HPMC中,并通过口服途径给药。啮齿动物。使用LC/MS-MS方法对OPM-383进行了定量。OPM-383(5 µM)脑中的蛋白结合在4H使用UPLVC/MS-MS孵育后进行分析。在英国Cyprotex评估了体外代谢,渗透性和蛋白质结合的体外代谢。HERG研究是在Cerep进行的;法国。 OPM-383溶解在1%Tween 80中,1%HPMC溶于水中,并通过口头途径以50 mg/kg的速度进行CD1。 在给药后九十分钟后,迅速剖析了小鼠,并在液氮中迅速解剖血液,脑和肾脏。 用于免疫印迹程序,使用针对PS935和总LRRK2的抗体。 MC-38细胞被接种到C57BL/6小鼠中。HERG研究是在Cerep进行的;法国。OPM-383溶解在1%Tween 80中,1%HPMC溶于水中,并通过口头途径以50 mg/kg的速度进行CD1。在给药后九十分钟后,迅速剖析了小鼠,并在液氮中迅速解剖血液,脑和肾脏。用于免疫印迹程序,使用针对PS935和总LRRK2的抗体。MC-38细胞被接种到C57BL/6小鼠中。蛋白质印迹检测和定量,并计算LRRK2 PS935/总LRRK2比例以比较LRRK2激酶抑制剂剂量与媒介物组相比。当肿瘤肿块达到75mm³时,将小鼠随机分配以接受OPM-383(50和100 mg/kg,口服,本次),抗PD1抗体(10 mg/kg,IP,每周两次)或组合。用OPM-383处理通过胃管通过口服烤(PO)进行治疗。给药量为10 mL/kg,调整为最新的个体体重。抗PD-1处理被注入腹膜腔(IP)。 动物治疗35天。 OPM-383使用Sengine-Paris®平台在患者衍生的类器官中进行了评估。 使用声液体处理机器人在第一天对细胞进行处理,不同浓度范围为0.32至10 µm。 在第六天,相对于车辆处理的井,每个孔中的细胞活力是一个百分比确定的。 为了评估药物敏感性,对药物反应曲线的AUC数据进行了分层聚类。 因此,Sengine确定了阈值(SPM),以定义分子在器官中的活性。 如果SPM> 9,则认为类器官对药物敏感,而SPM <9表示耐药性。抗PD-1处理被注入腹膜腔(IP)。动物治疗35天。OPM-383使用Sengine-Paris®平台在患者衍生的类器官中进行了评估。使用声液体处理机器人在第一天对细胞进行处理,不同浓度范围为0.32至10 µm。在第六天,相对于车辆处理的井,每个孔中的细胞活力是一个百分比确定的。为了评估药物敏感性,对药物反应曲线的AUC数据进行了分层聚类。因此,Sengine确定了阈值(SPM),以定义分子在器官中的活性。如果SPM> 9,则认为类器官对药物敏感,而SPM <9表示耐药性。
。CC-BY 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
Kristen Dams-O'Connor,博士 NIDILRR ARRT 首席研究员 Kristen Dams-O'Connor 博士是 NIDILRR 高级康复研究培训 (ARRT) 项目的首席研究员、西奈山脑损伤研究中心 (BIRC) 主任、研究副主席以及西奈山伊坎医学院康复医学和神经病学系教授。Dams-O'Connor 博士的工作将临床数据、医疗保健数据、多模态生物标志物和神经病理学数据整合到前瞻性研究和大规模数据资源的二次分析中。她拥有强大的临床神经心理学背景,在高级统计和心理测量方法方面接受过广泛的研究生培训,并且在 TBI 诊断和护理方面拥有专业知识。她担任 NIDILRR 资助的纽约创伤性脑损伤护理模型系统的 PI,该系统为世界上最大的 TBI 结果前瞻性研究做出了贡献。 Dams-O'Connor 博士还担任 NIH 工作组的委员会主席,该工作组负责确定 2019 年和 2022 年 ADRD 峰会上脑损伤作为痴呆症风险因素的研究重点。Dams-O'Connor 博士还领导了 NIH 资助的多中心 TBI 后期效应 (LETBI) 项目,该项目旨在确定 TBI 后神经变性的体内和体外标志物以及新干预措施的可修改目标。在 NIH 和国防部的资助下,她将先进的分析策略应用于现有数据,以描述 TBI 后的健康和功能、护理差异和获取障碍,并确定退伍军人和平民长期健康下降的风险和保护措施。
富亮氨酸重复激酶 2 (LRRK2) 基因突变与家族性和散发性帕金森病 (PD) 病例有关,但也可发现于免疫相关疾病患者,如炎症性肠病 (IBD) 和麻风病,这将 LRRK2 与免疫系统联系起来。根据这一遗传证据,在过去十年中,有研究表明 LRRK2 可在全身和中枢神经系统水平上调节炎症反应。在本综述中,我们概括了 LRRK2 在 PD 和炎症性疾病模型中的中枢和外周炎症中的作用。此外,我们讨论了 LRRK2 抑制剂和抗炎药物如何有助于降低 LRRK2 突变携带者和 PD 患者的疾病风险/进展,从而支持 LRRK2 作为一种有前途的 PD 疾病改良策略。