在本文中,我们提出了一种波导集成干涉传感器,其中在单个等离子体波导中传播的两种等离子体模式之间发生干涉。为了进行传感,通过增加金属电极之间的距离重新排列了垂直等离子体槽波导。因此,与每个金属电极相关的等离子体模式(通常形成混合等离子体槽模式)已被分离,使它们能够在金属电极的相对边缘上独立传播。这允许实现马赫-曾德尔干涉仪,其中光通过传统的锥形结构从光子波导耦合进出结构。值得注意的是,支持等离子体模式的金属电极也可以用作电触点。通过在它们之间施加直流电压,可以有效地分离漂移到其中一个金属电极的离子。因此,马赫-曾德尔干涉仪的一条臂会经历更高的损耗和相位积累,导致马赫-曾德尔干涉仪不平衡和传输下降。这里,透射率的任何变化仅指液体中的离子量,因为干涉仪的输出信号通过与被检查的液体溶液直接接触的参考臂标准化为液体。被检查的液体中的离子总量保持不变,但是,当施加电压时离子会向其中一个金属电极漂移,因此间隙中的离子分布会发生变化。因此,可以通过干涉仪的透射测量来监测液体中离子浓度的任何变化。所提出的配置对干涉仪两个臂之间的透射率变化高度敏感,即使在 1550 nm 的电信波长下也能实现超过 12460 nm/RIU 的创纪录灵敏度。预计中红外波长的灵敏度将进一步增强,这对应于大多数化学和生物化合物的最大吸收峰。
Chiagozie Mbah 6 摘要 目的:本研究旨在增强射频 (RF) 能量收集的电压倍增器,重点是提高收集能量的效率。这一改进对于可持续能源应用和减少化石燃料造成的环境污染至关重要。 理论参考:射频能量收集技术正逐渐被认可为一种可行的可持续环境能量捕获方法,早期的研究主要集中在天线和电路设计上。尽管如此,能量收集的有效性仍然受到功率输出不足的限制。本研究在先前的研究基础上,直接比较了两种常用的电压倍增器,即 Cockcroft Walton 和 Dickson 倍增器,并将其应用于射频能量收集。 方法:使用 Multisim 对 Cockcroft Walton 和 Dickson 电压倍增器进行优化设计,并使用 MATLAB 分析其性能。比较是在两个频率范围内以 1V 的输入电压进行的:85 MHz – 110 MHz(FM 频段)和 1.8 GHz – 3.0 GHz(4G 频段)。记录了两个倍增器的输出电压,并在这些频带上进行了比较。结果与结论:在 FM 频带(85 MHz – 110 MHz)内输入电压为 1V 时,Dickson 电压倍增器的性能优于 Cockcroft Walton 倍增器,其输出电压为 11.1V,而 Dickson 为 6.6V。然而,在 4G 频带(1.8 GHz – 3.0 GHz)中,Cockcroft Walton 倍增器的效率更高,其最大输出电压为 5.2V,而 Dickson 为 4.1V。研究得出结论,Dickson 倍增器更适合从 FM 频带收集射频能量,而 Cockcroft Walton 倍增器更适合 4G 频带能量收集。研究意义:研究结果表明,不同的射频能量收集应用可能受益于不同的电压倍增器,具体取决于所涉及的频带。这可以指导未来旨在实现可持续能源解决方案的技术中更高效的射频能量收集电路的设计。原创性/价值:本研究直接比较了不同射频频率条件下的两个电压倍增器,为优化绿色能源应用的能量收集技术提供了宝贵的见解。研究结果有助于加深对特定射频频段高效电路设计的理解,有助于开发更有效的能量收集系统。关键词:电压倍增器、Cockcroft-Walton 电压倍增器、Dickson 电压倍增器、能量收集、射频。
•中断下降0%,1个周期标准B•下降40%10/12循环= 200ms标准C•下降70%25/30循环= 500ms Criteria C•测试每个测试事件之间的10s间隔的三个dips/Dips/中断顺序。
基本描述 高容量可扩展电池储能系统 (BESS),容量从 186 kWh 到 1.118 MWh,存储在根据每个客户的性能要求量身定制的技术容器中,并配有自己的集成转换器。我们的 BESS 由全球最大的电池制造商 CATL(占全球电池产量的 37.1%)的方形 LFP(LiFePo)电池组装而成,该公司还提供 BMS(电池单元控制系统)。转换器在交流侧以 3x400V 的电压连接,CATL 280Ah 方形电池以 52 个串联连接,形成一个容量为 46.57 kWh 的电池模块。这些模块由乙二醇溶液冷却,可将每个单独的电池单元的温度控制(冷却/加热)到相同的温度,这是影响电池储能系统寿命和效率的最重要因素之一。 REMAVY GROUP 通过其 IT 部门开发了自己的控制软件,使 BESS 可用于所有已知的最终用例。REMAVY BESS 存储和容器的目标客户包括各种规模的光伏电站的所有者和运营商、大小型工业公司、区域供热厂、LDS 的运营商和所有者、沼气站、水电和风力发电厂等。然而,那些不拥有发电厂或工业设施的人也会购买电池容器。其中包括使用它们在日内市场上进行电力交易或将其电池存储用于平衡服务或灵活性(市场聚合器)的交易者。后一种使用模式目前提供最快的投资回报,而不仅仅是储存光伏能源(节能)或平滑消费峰值(削峰)。
基于可再生能源的发展分布生成,以提高功率质量。依赖于天气和气候变化的风和太阳能发电机等可再生能源的可变性质对微网格的功率质量产生了影响。功率质量评估涉及许多指标;包括电压质量,电压不平衡,SAG得分和当前得分(当前THD)。良好的功率质量评估减少了电力系统中的能源损失,从而降低了高利润率。在这项研究中;描述了使用新型磷虾优化(NKHO)技术在混合微电网中进行的电压质量评估。在电压评估中使用NKHO进行混合微电网提供了优化微电网的控制和操作的强大而有效的方法,从而确保其可靠性并最大程度地减少其对网格的影响。所提出的技术可以识别敏感的总线和能量存储系统的最佳尺寸,以减轻电压下垂的影响。这项研究评估了在微电磁电压调控中的分数阶订单比例,积分和衍生物(FOPID)控制器的应用。使用MATLAB/SIMULINK环境开发了所提出的杂种微电网。
*为了确保最高性能,建议在15°C和40°C之间的受控温度环境中安装(低于15°C以下电池,电池通过限制充电电流和低于0°C的电池停止充电来保护自己电池的条件以及电池连接的逆变器。请参阅逆变器数据表,以进行实际充电和排放电流
•亲吻LV自动断开连接 - 低压自动断开连接 - “刀”开关的新版本。•bebdt - 电池电动总线驱动火车•BMS - 电池管理系统•ESS - 储能系统•EVSE - 电动汽车供应设备 - 基础设施侧面充电器•LOTO - LOTO - LOTO/TAGOUT•LV - 低电压 - 低电压(小于50 V AC或DC),或者通常是12/24V DC)•与当前的高电压(不超过50 VAC)•HV -HV - AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC较高(不超过50 v)。 HVAC - 供暖,通风和空调)•HV DC - 高压直流电流•HVIL - 危险或高压互锁环•MSD•MSD - 手动服务断开•SCM - SCM - 系统控制模块•VAC•VAV - VOV - VDC交替•VDC - VDC - VDC - VDC - 电压 - 电流•HVJB/高电量范围/型号 cort> cort> cort>
本论文由雪城大学 SURFACE 免费提供给您,供您开放访问。雪城大学 SURFACE 的授权管理员已接受本论文并将其收录到论文 - ALL 中。如需更多信息,请联系 surface@syr.edu。
Stellantis 积极履行尽职调查职责,以遵守其整个供应链中的社会标准,更具体地说是遵守与低排放出行(电动和混合动力汽车)相关的风险。因此,我们选择 RCS Global 和 NQC 作为合作伙伴来执行我们的原材料透明度项目。我们正在绘制和审核高压电池供应商的供应链。审核是根据 OECD 尽职调查指南进行的。截至 2022 年 4 月 20 日*) 的关键数据如下:
可能面临因检修孔和地下室中的设备和电缆爆炸而导致的危险,以及在变电站或发电设施中工作时可能面临的高压电击、焊料烧伤、骨折、割伤和擦伤、高温和噪音的危险,在户外工作时可能面临极端天气的危险,在检修孔中工作时可能面临难闻的气味和湿滑的表面。在高压电线周围工作时可能面临电击伤,从电线杆上摔下来可能面临骨折,工作姿势不当可能面临拉伤,以及变压器和油开关中的绝缘油等化学物质。