NOMENCLATURE DFIG Doubly Fed Induction generator MW, Mvar Megawatt, Mega volt ampere reactive WEC Wind Energy Conversion I, pv, Vpv Output current (A) and output voltage (V) PCC Point Of Common Coupling Iph Photocurrent generated by light (A) LVRT Low Voltage Ride Through Rs, Rsh Series resistance and shunt resistance (Ω) PSO Particle群的优化n,k的k理想因子和玻尔兹曼常数(1.38×10-23J/k)ITAE ITAE积分时间绝对误差t PV细胞温度(K)FRT故障乘坐D,Q D – Q轴成分
摘要:本文对不同的储能系统 (ESS) 在为基于电力电子的电解系统提供低电压穿越 (LVRT) 支持方面进行了全面的技术经济分析。开发了一个用于分析电网集成电解器-ESS 系统性能的框架,其中考虑了现实场景和精确的模型。系统组件包括一个集成中压电网的 500 kW 碱性电解器模块和三种不同的商用 ESS,分别基于锂离子电池、锂离子电容器和超级电容器技术。针对三种 LVRT 曲线对这些 ESS 的性能进行了广泛的研究,主要关注即将出台的丹麦电网规范。为了进行仿真研究,该系统在 MATLAB ® /Simulink ® -PLECS ® 平台上实现。结果表明,这三种储能技术都能够在配电网出现低压异常时支持电解器系统。研究还表明,从技术经济角度来看,基于超级电容器的技术似乎更适合故障穿越(FRT)合规性。
伊斯兰阿扎德大学阿利亚·卡图尔分公司电气工程系0000-0001-7004-3311; 2。0000-0001-6841-534X; 3。0000-0003-3720-8318 doi:10.15199/48.2024.05.47缓解亚同步共振和改进的低电压 - 电压直通乘车乘坐串联双率连接感应感应机器的能力,使用桥梁固体固体固体型固体固体型FCL摘要。串联电容器补偿方法被广泛用于传输线,以扩大传输线的主动功率能力。他们为连接大规模风电场(WFS)的连接提供了一种实用的解决方案,以将风能传输到长距离负载中心的网格中。集成大规模WFS与电力系统可能导致亚同步共振(SSR)现象和通过(LVRT)通过串联电容补偿传输线连接的WFS中的(LVRT)挑战(LVRT)挑战。本文建议使用桥梁型固态故障电流限制器(BSFCL)来阻尼SSR并增强集成到电力系统的串联电容补偿WFS的LVRT性能。本研究中建模的WF是一台聚集的双喂养机器(DFIM)。修改了第一个标准基准IEEE系统,并在PSCAD/EMTDC软件中进行了模拟,以显示BSFCL功能,用于抑制SSR并改善本文中WFS的LVRT要求。考虑到模拟结果,发现BSFCL有效地减轻了SSR振荡,并满足了集成到功率系统的串联电容式补偿WF的LVRT要求。Streszczenie。串联传感器补偿方法被广泛用于传输线,以增加传输线的主动能力。提供了一个实用的解决方案,可让您将大型风电场(FW)连接到网络,以长距离施加负载中心将风能发送到网络。大规模FW与功率系统的集成可以导致同步共振现象(SSR)以及与串行,电容补偿传输线连接的FW中与低压传递(LVRT)相关的挑战。本文建议使用半导体桥 - 型短电路电源限制器(BSFCL)来抑制SSR,并提高LVRT PE LVRT效率,并与电容性补偿与电容系统集成在一起。WF是具有双电源(DFIM)的聚合感应机。在本文中,第一个标准设计系统IEEE已在PSCAD/EMTDC软件中进行了修改和模拟,以显示BSFCL抑制SSR并提高PF的LVRT要求的能力。考虑到模拟的结果,发现BSFCL有效地舒缓了SSR振荡,并满足了与电源系统集成的电容补偿的串行FW的LVRT要求。通常,WF远离负载中心,需要长的传输线以将风力传输到它们。按串联电容器进行补偿传输线是一种实用方法,是增加长距离传输线功率传输能力[1]。两个SSR事件的细节均在参考文献[2-3]中列出。美国。美国。(减轻同步共振,并提高基于连续补偿的感应机,通过使用桥梁类型FCL的半导体FCL的感应机,在风电场中行驶的能力:风场,风场,风场,LVRT,LVRT,SSR,SSR,DFIM,BSFCL关键字: Wind,LVRT,SSR,DFIM,BSFC简介升级了风能的贡献和传播是与电网相关的WF的两个主要挑战。howver,串联电容器的应用可能导致WFS中的亚同步共振(SSR)发生[2]。此外,使用串联电容器减少了透射阻抗,并导致在短路断层期间增加WF故障电流[1-2]。SSR会导致在一个或多个子同步频率下增加与电力系统和发电机轴的能量交换,这可能会加载到风力涡轮机的故障,然后从功率系统中断开WF集成网格代码。基于LVRT要求,WF必须在不同的断层中保留服务,以确保WFS中的SSSR EVENS。在2009年,由于德克萨斯州南部的SSR事件,大量WFS的风力涡轮机被销毁。美国[4]。 在2012年,这种现象在中国圭恩地区的WF中重复。 2017年8月至10月,得克萨斯州发生了三个SSR Circumpstances。 所有这些都出现在与电力系统连接的基于DFIMS的串联综合WF中。 有两种方法可以减轻DFIM- 中的SSR美国[4]。在2012年,这种现象在中国圭恩地区的WF中重复。2017年8月至10月,得克萨斯州发生了三个SSR Circumpstances。所有这些都出现在与电力系统连接的基于DFIMS的串联综合WF中。有两种方法可以减轻DFIM-
图 3- 20: LVRT 期间无功功率响应不理想的典型电厂案例研究 ...................................................................................................................................... 78 图 3- 21: RE 电厂外部 765 kV Bhadla-Bikaner 电路 1 的相间故障 ............................................................................................. 79 图 3- 22:通过 400 kV Bhadla 端的 400 kV Bhadla-Bhadla-2 电路 1 的 PMU 观察到的 765 kV Bhadla-Bikaner 电路 1 的 YB 故障 ................................................................................................................ 80 图 3- 23: 事件期间的 Bassi PMU 频率 ............................................................................................................................. 80 图 3- 24: 通过 SCADA 观察到的 NR 发电损失为 7120 MW ............................................................................................................. 81 图 3- 25: LVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................................. 82 图3- 26 典型电厂在 LVRT 期间无功响应满意的案例分析 ...................................................................................................................... 83 图 3- 27 典型电厂在 LVRT 期间有功响应延迟的案例分析 ...................................................................................................... 84 图 3- 28 典型电厂在 LVRT 期间有功响应不满意的案例分析 ............................................................................................. 84 图 3- 29 典型电厂在 LVRT 期间无功响应不满意的案例分析 ............................................................................................. 85 图 3- 30 典型电厂在 HVRT 期间有功响应满意的案例分析 ............................................................................................. 85 图 3- 31 典型电厂在 HVRT 期间无功响应满意的案例分析 ............................................................................................. 86 图 3- 32 典型电厂在 HVRT 期间有功响应不满意的案例分析 ............................................................................................. 86 图 3- 33 典型电厂在 HVRT 期间无功响应不满意的案例分析 ............................................................................................. 87 图3- 34: 典型电厂响应不良的案例研究 ...................................................................................................... 88 图 3- 35: 765kV Bhadla2-Ajmer 电路 2 发生相接地故障,随后 RE 电厂外部的 A/R 失败 ................................................................................................................................ 89 图 3- 36: 765kV Ajmer-Bhadla2 ckt-2 发生相接地故障,随后 A/R 失败 ............................................................................................................................. 90 图 3- 37 事件期间 RE 发电量的减少(SCADA 数据) ............................................................................................................. 90 图 3- 38: 典型电厂在 LVRT 期间具有令人满意的有功功率响应的案例研究 ............................................................................................. 92 图 3- 39: 典型电厂在 LVRT 期间具有令人满意的有功功率响应的案例研究 ............................................................................................. 92 图 3- 40: 典型电厂在 LVRT 期间有功功率响应延迟的案例研究 ............................................................................................................. 3-41:LVRT 期间有功功率响应不理想的典型电厂案例研究...................................................... 94 图 3-42 2 月 9 日事件中的 NR 太阳能发电模式......................................................................................... 95 图 3- 43 2 月 9 日事件中的 NR 太阳能发电模式 .............................................................................. 95 图 3- 44:在 Bhadla 端打开 765 kV Bhadla-Bikaner 电路 1 线路电抗器 ............................................................................. 96 图 3- 45:打开线路电抗器后 765 kV Bhadla (PG) 的电压(根据 765 kV Fathegarh-2 Bhadla (PG) 线路的 PMU 记录) ................................................................................................................ 96 图 3- 46:事件期间的 Bassi PMU 频率 ............................................................................................................. 97 图 3- 47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 在过电压阶段 I 上跳闸 98 图 3- 48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ...... 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ........................................ 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ........................................ 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究 ................................................................................................................................................ 102 图 3-53:典型 RE 电厂的逆变器数据表 ............................................................................................................................. 104 图 3-54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................... 96 图 3-46:事件期间的 Bassi PMU 频率 .............................................................................................. 97 图 3-47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 因过电压阶段 I 跳闸 98 图 3-48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ............................................................................................. 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究........................................................................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 .......................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................... 96 图 3-46:事件期间的 Bassi PMU 频率 .............................................................................................. 97 图 3-47:通过 PMU 观察到 765 kV Bhadla - Fatehgarh 2 因过电压阶段 I 跳闸 98 图 3-48:通过 DR 记录观察到 765 kV Bhadla-Fatehgarh-II 电路 1 跳闸 ............................................................................................. 99 图 3-49:HVRT 期间有功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-50:HVRT 期间无功功率响应令人满意的典型电厂案例研究 ............................................................................. 100 图 3-51:HVRT 期间有功功率响应不令人满意的典型电厂案例研究 101 图 3-52:HVRT 期间无功功率响应不令人满意的典型电厂案例研究........................................................................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 .......................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 ...................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110........................................................................................................... 102 图 3- 53:典型 RE 电厂的逆变器数据表 ...................................................................................... 104 图 3- 54 2023 年 1 月 27 日在 Fatehgarh-2 池站观察到的振荡。 ................................................. 106 图 3-55 FTHC 装置中频率为 2-3 Hz 的电压振荡(06-01-2023) ............................................................................. 107 图 3-56 振荡的频谱(06-01-2023) ............................................................................................. 107 图 3- 57 FTHC 装置中频率为 3.6 Hz 的电压振荡(12-07-2023) ............................................................................. 108 图 3- 58 振荡的频谱(12-07-2023) ............................................................................................. 108 图 3- 59 FTHE 装置抽真空管线中频率为 0.08Hz Hz 的电压振荡(30-01-2023) ................................................................................................................................................ 109 图 3- 60 (2023 年 1 月 30 日)...................................................................... 110
摘要:在高比例可再生能源并网系统中,传统的虚拟同步发电机(VSG)控制面临诸多挑战,特别是在电网电压跌落时难以保持同步,这可能导致电流过载和设备断线,影响系统的安全性和可靠性,同时限制系统的动态无功支撑能力。针对这一问题,本研究设计了一种直流侧接入电池储能装置的风光互补发电系统,并提出了一种基于改进型VSG的并网逆变器低电压穿越(LVRT)控制策略。该控制策略采用虚拟阻抗与矢量限流相结合的综合限流技术,通过调节无功功率设定值来保证VSG在对称故障期间表现出良好的动态功率支撑特性,同时保持VSG自身的同步和功角稳定性,实现LVRT的目标。仿真结果表明,提出的控制策略能够有效抑制可再生能源出力波动(与传统策略相比波动幅度降低约30%),保证电网侧故障时可再生能源和VSG安全可靠运行,同时提供给定无功功率支撑和稳定的电网电压控制(电压跌落降低约20%),显著提升风光储混合发电系统的低电压穿越能力。
电压控制(无负载<1%)•平衡和不平衡的电压故障条件(ZVRT,LVRT和140%HVRT) - 在13.2 kV和34.5 kV和34.5 kV端子上的每个阶段的独立电压控制•响应时间 - 响应时间 - 不到1毫秒,从全电压到零的续航时间,或从Zero sere sere sere sere sere sere serabor in ZERO,或从Zero sere sere serim serim in Zero seremece in Zero serem in Zero serim in Zero serem in ZERO•零件的续航时间•均值为零,或者是零射击的固定•组件•长期对称电压变化(+/- 10%)和电压幅度调制(0-10 Hz) - SSR条件•可编程阻抗(强和弱网格(强和弱),与POI相对应的宽度范围,与250 MVA的短路电压表现出250 MVA)•受控伏特的扭曲量(0-2)逆变器耦合的生成和负载•任何系统的全季度反应能力表征
摘要:脱碳需求要求建立近 100% 的可再生电力,从而对电网形成 (GFM) 能力提出要求。前述范式从同步交流系统转变为基于转换器的系统,该系统需要在提供 GFM 服务的同时保持稳定和自同步。然而,正如本文在引言中分析的那样,实现这些目标不可避免地需要在风力涡轮机中实现 PLL 控制器和储能,而风力涡轮机不适合在弱能量系统中运行。为了解决这个问题,提出了一种新颖的电网形成方法。建议的想法是在电网侧转换器中创建一个模拟惯性响应的直流电压控制器,并在发电机侧转换器中应用转子动能存储 (RKES) 控制器。此外,提出了一种 RKES 控制器和传统低电压穿越 (LVRT) 的协调控制器,以提高动态性能并在瞬态过程中保持电网形成能力。提供广泛的建模、基于半物理平台的实验结果和实际风电场示范项目来验证所提出的控制方法。结果证明了所提出的方法应用于未来 100% 可再生电力的有效性。
缩写意思是GPS全球定位系统HMI人体机器接口HT高张力HT高度供暖,通风和空调HVRT HVRT高压直通乘车能力IEC IEC IEC国际电气技术委员会IEEEE IEEE IEEE IEEE EEEE电气和电子学院电气和电子工程师ILAC国际实验室iPC KIR IPC IPC INSTARD STARTARD KICRITS IPT KIRT IS PRINS IPT IS TORTITS IS TORT TORT TORT TRIT TRIT TRIT TRIT TRIT TRIT TRIT TRIT TRIT TRIT IS TRIT IS TORTITIT设立定为 LVRT Low-Voltage Ride-through Capability MOG Magnetic Oil Gauge MOV Metal Oxide Varistor MW Mega Watt MWh Mega Watt Hour MWT Multi Winding Transformer N2 Nitrogen NFPA National Fire Protection Association O&M Operation & Maintenance OEM Original Equipment Manufacturers PCS Power Conditioning System PPE Personal protective equipment PRV Pressure Relief Valve PWD Public welfare Dept.QAP质量保证计划ROHS限制(某些)危险物质RTE往返效率SAT站点接受测试SCADA主管控制和数据获取系统SLA服务水平协议SOC SOC SOC SOC oh Health SOW SOW SOW SOW工作范围SPD涌现设备
Term Definition AAS Automatic Access Standard AEMC Australian Energy Market Commission AEMO Australian Energy Market Operator BESS Battery Energy Storage System BOP Balance of plant CUO Continuous Uninterrupted Operation DMAT Dynamic Model Acceptance Test FFR Fast Frequency Response FRT Fault Ride Through HiL Hardware in Loop LVRT Low Voltage Ride Through IBR Inverter-based resource GFL Grid Following GFM Grid Forming GFMI Grid Forming Inverter GPS Generator Performance Standard MMIB Multi Machine Infinite Buss NER National Electricity Rules NREL National Renewable Energy Laboratory NSW New South Wales OEM Original Equipment Manufacturer PFR Primary Frequency Response PLL Phase locked loop POC Point of connection POD Power Oscillation Damper Proponent A prospective supplier of SVWSS PSCAD Power Systems Computer Aided Design PSS Power System Stabiliser PV Photovoltaic RL Resistive and Inductive RMS Root Mean Squared ROCOF Rate of change of frequency ROCOV Rate of change of voltage RUG Releasable User Guide SCR Short Circuit Ratio SMIB Single Machine Infinite Bus SOC State of Charge SRAS System Restart Ancillary Service SSS System Strength Service SVWSS Stable Voltage Waveform Support Service SSSP System Strength Service Provider (Transgrid) TOV Temporary Overvoltage Voluntary Specification AEMO's Voluntary Grid-forming Inverter Specification - 2023年5月[1]