补体系统是先天免疫系统的一部分。主要称为导致膜攻击复合物(MAC)形成的过程,该过程破坏了靶细胞触发细胞裂解和死亡的细胞膜,但补体系统具有额外的效应子功能,例如靶向细胞的分配和促进渗透量(1,2)。止血是导致受伤血管出血的过程。它是通过三个主要步骤开始的:血管收缩,血小板塞的形成和纤维凝块形成由凝结级联反应介导的(3)。补体系统和凝结级联反应依赖于丝氨酸蛋白酶的顺序激活,并要求在露天或改变的表面被激活,并为外部威胁提供先天的防御。总结了许多评论(4-6)中,补体和凝结系统之间存在广泛的串扰,这并不奇怪,因为它们具有共同的进化起源(7)。For example, complement components such as C3, C4, C5a and factor B (FB) are found in thrombi ( 8 ) and we previously showed that mannose-binding lectin (MBL) of the lectin pathway (LP) of complement activation co-localises with activated platelets and von Willebrand factor (vWF) in a microvascular bleeding model ( 9 ).MBL相关的丝氨酸蛋白酶1和2(MASP-1,MASP-2)的凝集素途径已显示与活化的血小板结合(10)和C3结合VWF(11)。补体和凝结级联反应的激活也导致血细胞和内皮细胞的激活,结果此外,已显示替代补体途径(AP)在锚定在内皮细胞上的超大VWF多聚体上组装和激活(12)。我们先前表明MASP-1可以激活凝血酶原(13),并且对MBL和MASP-1的抑制会在微血管出血模型中降低损伤部位的纤维纤维形成和/或血小板激活(9)。
自1885年第一次使用氧气用于呼吸支持以来,氧气的效用已随着我们对氧剂量机制和生物学作用的理解的演变而不断演变。这些生物学作用之一,干细胞动员,为细胞氧张力在组织愈合和再生中的作用提供了关键机制(Thom等,2006)。随后的研究建立了氧剂量与干细胞动员之间的直接关系(Heyboer等,2014)。通过氧气剂量动员干细胞的机理在骨髓中增加一氧化氮(Goldstein等,2006),导致血管形成加速和伤口愈合(Gallagher等,2006; Milovanova等,2008,2008)。这些论文在2.0 atm的绝对呼吸100%氧(PIO2 = 1,426 mmHg)和2.4 ATM绝对呼吸100%氧气(PIO2 = 1,777 mmHg)上,在2.0 atm氧气的刺激剂量曲线的剂量刺激阶段建立了两个点。氧气的低剂量刺激阶段尚未完全阐明。在我们实验室中进行的一项实验中,首次研究了开始干细胞动员和细胞因子调节所需的最小剂量。该实验表明,在大鼠模型中,干细胞被42%正常氧(PIO2 = 300 mmHg)动员(Maclaughlin等,2019)。随后在2022年的实验室还进行了一个新的实验,建立了一个新的低剂量刺激点为1.27 atm绝对高压空气(PIO2 = 189 mmHg)。这些发现支持低氧水平可以实质上影响干细胞动力学和该研究导致动员的茎祖细胞(SPC)在9次暴露至1.27 ATA高压空气后,在第十次暴露后72小时进一步增加了3倍,不仅立即增加了3倍,这不仅表明即时而且持久效果(Maclaughlin等人,20233)。为了进一步阐明氧气的炎症剂量曲线的低剂量刺激阶段,在本实验中,我们测试了NBO(100%正常医学氧)(PIO2 = 713 mmHg),以进行干细胞动员和炎症细胞因子调节。首次以氧气的氧气和供应渠道不知所措,但最终导致了改善,因此其万维邦的可用性增加了(组织,2021年)。尽管在Covid-19大流行期间使用了氧气,主要是因为其能够为有助于维持足够的血氧水平的肺提供补充氧气,但尚不清楚是否涉及其他机制(即干细胞动员和细胞因子调节)。最近的研究表明,相对较低的氧张力(PIO2)可以产生显着的生物学反应(Maclaughlin等,2019; Maclaughlin等,2023; Miller等,2015; Cifu等,2014)。