糖尿病性视网膜病(DR)的特征是由于慢性高血糖而导致神经血管变性。增殖性糖尿病性视网膜病(PDR)是DR的最严重并发症,可以导致总(中央和外围)视觉丧失。pdr的特征是存在异常的新血管,即所谓的“新容器”,位于视盘(NVD)或视网膜(NVE)的其他地方。pdr可以发展为高风险特征(HRC)PDR(HRC-PDR),它的定义是NVD的存在大小超过四分之一至三分之一的圆盘区域,加上玻璃体出血或视网膜前出血,或者丢血前的出血,或玻璃体的出血或玻璃体前出血或前出血区粘附区域。在严重的情况下,纤维血管膜在视网膜表面生长,尽管进行了治疗,但仍会发生视力丧失的视网膜脱离。尽管大多数(如果不是全部)糖尿病的人寿命足够长的人会发展为DR,但只有在威胁视力范围内的PDR阶段的进展。
CRISPR、Cas12a、CPF1、大麦、诱变、单子叶植物、基因组编辑摘要我们报告了首次成功、高效使用大麦中的 Lb Cas12a,并描述了两种新型 Cas12a 变体的开发和应用。总共我们使用二十种不同的指南比较了五种编码序列 (CDS) 变体,包括两种新型变体和两种指南架构,针对 5 种不同的靶基因。我们发现不同 CDS 版本 (0-87%) 和指南架构 (0-70%) 之间的编辑效率存在很大差异,并且表明我们的两个新型 CDS 版本在该物种的测试中大大优于其他版本。我们展示了产生的突变的遗传性。我们的研究结果强调了优化单个物种的 CRISPR 系统的重要性,并可能有助于在其他单子叶植物中使用 Lb Cas12a。正文 毛螺菌科细菌 Cas12a (Lb Cas12a) 可能是继化脓性链球菌 Cas9 (Sp Cas9) 之后植物基因组编辑中第二广泛使用的可编程核酸酶,并且具有一些潜在优势。首先,由于其对 TTTV PAM 的要求与 NGG 的 Sp Cas9 要求不同,它可用于 GC 沙漠,而 GC 沙漠通常存在于内含子、UTR 和启动子区域中。其次,Lb Cas12a 通常比 Sp Cas9 产生更大的缺失,这可能在缺失研究中有用。第三,虽然 Sp Cas9 在靶标的 PAM 近端切割产生平端,但 Lb Cas12a 在 PAM 远端区域切割产生粘端;这两个特征可能解释了使用 Lb Cas12a 实现的基因靶向发生率更高 (Wolter 和 Puchta,2019)。已知在植物中起作用的三种版本的 Lb Cas12a 针对一个大麦靶标进行了测试。首先,是水稻优化的编码序列 (CDS) (Os Cas12a) (Tang et al., 2017);其次是人类优化的 CDS (Hs Cas12a),在双子叶植物中具有功能 (Bernabé-Orts et al., 2019);第三是拟南芥优化的 CDS,包含 D156R“耐高温”突变 (tt At Cas12a) (Schindele and Puchta, 2020)。我们还创建了两个新版本,携带 D156R 突变的 Hs Cas12a (tt Hs Cas12a) 和携带 8 个内含子的 tt At Cas12 (tt At Cas12+int)。这些内含子之前曾显著提高过 Sp Cas9 的效率(Grutzner 2021),因此我们使用相同的在线工具(NetGene2 - 2.42 - Services - DTU Health Tech)在我们的 tt At Cas12+int 设计中为拟南芥选项获得了较高的剪接置信度。