如今,发酵已成为一个价值 10 亿美元的全球性产业(Scott 和 Sullivan,2008 年;Konings 等人,2000 年)。尽管发酵对人类极为有益,但几个世纪以来,人们对此过程仍知之甚少。老一辈人不了解完整、理想发酵背后的微生物学,因此他们使用具有理想特性的发酵产物中的优质覆盖盐水或酵母糊来引发新的发酵,这种技术被称为回流发酵。1680 年,安东·范·列文虎克 (Anton van Leeuwenhoek) 使用早期显微镜对活细胞进行了观察,1839 年,卡尼亚尔-拉图尔 (Cagnard-Latour) 也对发酵做出了贡献,人们将发酵理解为一个微生物诱导的过程,在此过程中,酵母从糖中产生乙醇和二氧化碳(Nanninga,2010 年)。法国里尔的一位工业家与路易斯·巴斯德 (Louis Pasteur) 合作,发现了乳酸菌在发酵中的作用。在乙醇生产中,存在酒精浓度降低和酸味的问题。尽管如此,这一发现永远地改变了发酵领域。巴斯德在 1857 年至 1860 年间发表了多篇论文,记录了在发酵样品中用能产生乳酸的微生物取代生产乙醇的酵母群。这些记录首次证明了发酵的细菌性质,在 19 世纪 30 年代之前,发酵被理解为糖的化学降解(Nanninga 2010)。1873 年,Joseph Lister 通过稀释发酵乳制备了第一个纯发酵剂。15 年后,Vilhelm Storch 意识到了纯培养物在发酵中的潜在影响,制备了用于使巴氏杀菌奶油变酸的纯培养物(Knudsen 1931)。发酵剂在乳制品发酵中的应用始于 19 世纪 90 年代左右的哥本哈根(Stiles and Holzapfel 1997)。 1934 年,新西兰开始商业化引入定义明确的发酵培养物(Cogan 和 Hill 1993),从此开启了“受控”发酵时代。如今,发酵剂被定义为一种由至少一种微生物的大量细胞组成的微生物制剂,添加到原料中以加速和控制食品发酵的进程(Leroy 和 De Vuyst 2004;Ayhan 等人 2005)。因此,现代人对发酵食品的理解是微生物代谢过程,将糖转化为酸、气体或酒精,以实现长期保存,同时产生理想的感官特性。据估计,目前每年售出的面包酵母达 60 万吨(Pretorius 等人 2015)。用于大规模发酵的发酵剂的商业化总产量估计每年超过 40,000 升,用于接种数万吨原料(Hansen 等人,2015 年)。
1。jao,J.Y。等。微生物暗物质即将到来:挑战和机遇。国家科学评论8(2021)。2。Rinke,C。等。 对微生物暗物质的系统发育和编码潜力的见解。 自然499,431-437(2013)。 3。 Yarza,P。等。 使用16S rRNA基因序列将培养和未培养的细菌和古细菌的分类结合在一起。 自然评论微生物学12,635-645(2014)。 4。 Dykhuizen,D.E。 圣诞老人重新审视:为什么有这么多种细菌? Antonie van Leeuwenhoek国际通用与分子微生物学杂志73,25-33(1998)。 5。 Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。 &Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。 国际系统和进化微生物学杂志70,5607-5612(2020)。 6。 Chaffron,S.,Rehrauer,H.,Pernthaler,J. &von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。 基因组研究20,947-959(2010)。 7。 QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Rinke,C。等。对微生物暗物质的系统发育和编码潜力的见解。自然499,431-437(2013)。3。Yarza,P。等。使用16S rRNA基因序列将培养和未培养的细菌和古细菌的分类结合在一起。自然评论微生物学12,635-645(2014)。4。Dykhuizen,D.E。圣诞老人重新审视:为什么有这么多种细菌?Antonie van Leeuwenhoek国际通用与分子微生物学杂志73,25-33(1998)。5。Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。 &Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。 国际系统和进化微生物学杂志70,5607-5612(2020)。 6。 Chaffron,S.,Rehrauer,H.,Pernthaler,J. &von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。 基因组研究20,947-959(2010)。 7。 QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。&Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。国际系统和进化微生物学杂志70,5607-5612(2020)。6。Chaffron,S.,Rehrauer,H.,Pernthaler,J.&von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。基因组研究20,947-959(2010)。7。QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。QIN,J.J。等。通过元基因组测序建立的人类肠道微生物基因目录。自然464,59-70(2010)。8。Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Methé,B.A。等。人类微生物组研究的框架。自然486,215-221(2012)。9。lok,C。挖掘微生物暗物质。10。自然522,270-273(2015)。Medema,M.H。,De Rond,T。&Moore,B.S。 采矿基因组阐明了生命的专业化学。 自然评论遗传学22,553-571(2021)。 11。 Pavlopoulos,G.A。 等。 通过全球宏基因组学解开功能性暗物质。 自然622,594-602(2023)。 12。 Altae-Tran,H。等。 揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。 Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Medema,M.H。,De Rond,T。&Moore,B.S。采矿基因组阐明了生命的专业化学。自然评论遗传学22,553-571(2021)。11。Pavlopoulos,G.A。等。通过全球宏基因组学解开功能性暗物质。自然622,594-602(2023)。12。Altae-Tran,H。等。 揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。 Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Altae-Tran,H。等。揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Science 382,EADI1910(2023)。13。Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Wilkinson,B。&Micklefield,J。采矿和工程自然产品生物合成途径。自然化学生物学3,379-386(2007)。14。Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。天然产品报告40,89-127(2023)。15。Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Goig,G.A。等。直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。柳叶刀微生物1,E175-E183(2020)。16。刘,Y.X。等。微生物组数据的扩增子和宏基因组分析的实用指南。蛋白质和细胞12,315-330(2021)。17。Ustick,L.J。等。宏基因组分析揭示了海洋营养限制的全球规模模式。科学372,287-291(2021)。18。Nissen,J.N。 等。Nissen,J.N。等。使用深层自动编码器改进了元基因组套筒和组装。自然生物技术39,555-560(2021)。
1。Benninga Ma等。儿童期功能性胃肠道疾病:新生儿/幼儿。胃肠病学。2016年2月15日:S0016-5085(16)00182-7。 doi:10.1053/j.gastro.2016.02.016。2。Ouald Chaib A等人。 胃肠道微生物组对婴儿绞痛的影响。 专家Rev Gastroenterol Hepatol。 2020年10月; 14(10):919-932。 doi:10.1080/17474124.2020.1791702。 3。 Savino F等。 母乳喂养和非粘性婴儿中的肠道菌群。 acta paediatr。 2004 Jun; 93(6):825-9。 PMID:15244234。 4。 de Weerth C等。 肠胃菌群的肠道菌群:发育和特定特异性。 儿科。 2013年2月; 131(2):E550-8。 doi:10.1542/ peds.2012-1449。 EPUB 2013 1月14日。 PMID:23319531。 5。 Szajewska H等。 欧洲小儿胃肠病学,肝病学和营养学会的益生菌和益生元工作组*。 用于治疗小儿胃肠道疾病的益生菌:Espghan特殊兴趣组的位置论文和肠道微生物群和修饰。 J Pediatr胃肠道Nutr。 2022年10月11日。DOI:10.1097/mpg.0000000000003633。 6。 Hill C等。 专家共识文件。 国际益生菌和益生元科学协会就益生菌一词的范围和适当使用术语陈述。 nat Rev Gastroenterol Hepatol。 EPUB 2014年6月10日。Ouald Chaib A等人。胃肠道微生物组对婴儿绞痛的影响。专家Rev Gastroenterol Hepatol。2020年10月; 14(10):919-932。 doi:10.1080/17474124.2020.1791702。3。Savino F等。母乳喂养和非粘性婴儿中的肠道菌群。acta paediatr。2004 Jun; 93(6):825-9。PMID:15244234。4。de Weerth C等。肠胃菌群的肠道菌群:发育和特定特异性。儿科。2013年2月; 131(2):E550-8。doi:10.1542/ peds.2012-1449。EPUB 2013 1月14日。PMID:23319531。5。Szajewska H等。 欧洲小儿胃肠病学,肝病学和营养学会的益生菌和益生元工作组*。 用于治疗小儿胃肠道疾病的益生菌:Espghan特殊兴趣组的位置论文和肠道微生物群和修饰。 J Pediatr胃肠道Nutr。 2022年10月11日。DOI:10.1097/mpg.0000000000003633。 6。 Hill C等。 专家共识文件。 国际益生菌和益生元科学协会就益生菌一词的范围和适当使用术语陈述。 nat Rev Gastroenterol Hepatol。 EPUB 2014年6月10日。Szajewska H等。欧洲小儿胃肠病学,肝病学和营养学会的益生菌和益生元工作组*。用于治疗小儿胃肠道疾病的益生菌:Espghan特殊兴趣组的位置论文和肠道微生物群和修饰。J Pediatr胃肠道Nutr。2022年10月11日。DOI:10.1097/mpg.0000000000003633。6。Hill C等。 专家共识文件。 国际益生菌和益生元科学协会就益生菌一词的范围和适当使用术语陈述。 nat Rev Gastroenterol Hepatol。 EPUB 2014年6月10日。Hill C等。专家共识文件。国际益生菌和益生元科学协会就益生菌一词的范围和适当使用术语陈述。nat Rev Gastroenterol Hepatol。EPUB 2014年6月10日。2014年8月; 11(8):506-14。 doi:10.1038/nrgastro.2014.66。PMID:24912386。7。Wu Ry等。时空图揭示了对肠道运动对乳杆菌和鼠李糖菌株的影响的区域差异。neurogastroenterol motil。2013 25:E205-E214。 8。 Spinler JK等。 人类衍生的益生菌乳酸杆菌Reuteri表现出旨在靶向多种肠细菌病原体的抗菌活性。 Anaerobe 2008 14:166-171。 9。 Liu Y等。 乳酸杆菌菌株通过调节肠道中TLR4和NFκB信号传导,从而减少了实验性坏死性肠结肠炎的发生率和严重程度。 Am J Physiol胃肠肝生理学。 2012 302:G608-G617。 10。 Dicksved J等。 尽管粘液层功能障碍,但在DSS治疗期间,Reuteri乳酸杆菌在DSS治疗过程中保持功能性粘膜屏障。 2012 PLOS ONE 7(9):E46399。 11。 Preidis Ga等。 益生菌刺激新生小鼠肠道中的肠细胞迁移和微生物多样性。 2012 Faseb J. 26:1960-1969。 12。 Perez-Burgos A等。 啮齿动物中的瞬态受体潜在的香草素1通道是益生菌L. reuteri DSM 17938的抗伤害感受效应的主要靶标。 J生理学。 2015 593:3943-3957。 13。 Mu Q等。 乳酸杆菌REUTERI在人类健康和疾病中的作用。 微生物学的前沿。 2018 Vol 9,757。doi:10.3389/fmicb.2018.00757 14。2013 25:E205-E214。8。Spinler JK等。人类衍生的益生菌乳酸杆菌Reuteri表现出旨在靶向多种肠细菌病原体的抗菌活性。Anaerobe 2008 14:166-171。9。Liu Y等。 乳酸杆菌菌株通过调节肠道中TLR4和NFκB信号传导,从而减少了实验性坏死性肠结肠炎的发生率和严重程度。 Am J Physiol胃肠肝生理学。 2012 302:G608-G617。 10。 Dicksved J等。 尽管粘液层功能障碍,但在DSS治疗期间,Reuteri乳酸杆菌在DSS治疗过程中保持功能性粘膜屏障。 2012 PLOS ONE 7(9):E46399。 11。 Preidis Ga等。 益生菌刺激新生小鼠肠道中的肠细胞迁移和微生物多样性。 2012 Faseb J. 26:1960-1969。 12。 Perez-Burgos A等。 啮齿动物中的瞬态受体潜在的香草素1通道是益生菌L. reuteri DSM 17938的抗伤害感受效应的主要靶标。 J生理学。 2015 593:3943-3957。 13。 Mu Q等。 乳酸杆菌REUTERI在人类健康和疾病中的作用。 微生物学的前沿。 2018 Vol 9,757。doi:10.3389/fmicb.2018.00757 14。Liu Y等。乳酸杆菌菌株通过调节肠道中TLR4和NFκB信号传导,从而减少了实验性坏死性肠结肠炎的发生率和严重程度。Am J Physiol胃肠肝生理学。2012 302:G608-G617。10。Dicksved J等。尽管粘液层功能障碍,但在DSS治疗期间,Reuteri乳酸杆菌在DSS治疗过程中保持功能性粘膜屏障。2012 PLOS ONE 7(9):E46399。11。Preidis Ga等。益生菌刺激新生小鼠肠道中的肠细胞迁移和微生物多样性。2012 Faseb J.26:1960-1969。12。Perez-Burgos A等。啮齿动物中的瞬态受体潜在的香草素1通道是益生菌L. reuteri DSM 17938的抗伤害感受效应的主要靶标。J生理学。2015 593:3943-3957。13。Mu Q等。乳酸杆菌REUTERI在人类健康和疾病中的作用。微生物学的前沿。2018 Vol 9,757。doi:10.3389/fmicb.2018.00757 14。2018 Vol 9,757。doi:10.3389/fmicb.2018.00757 14。Szajewska H等。 Reuteri DSM乳酸杆菌17938用于母乳喂养婴儿的婴儿绞痛:一项随机,双盲,安慰剂对照试验。 J Pediatr。 2013年2月; 162(2):257-62。 doi:10.1016/j。 jpeds.2012.08.004。 15。 Savino F等。 Reuteri(美国型培养物收集菌株55730)与Simethicone在婴儿绞痛的治疗中:一项前瞻性随机研究。 儿科。 2007 JAN; 119(1):E124-30。 doi:10.1542/peds.2006-1222。 16。 Savino F等。 Reuteri DSM 17938在婴儿绞痛中:一项随机,双盲,安慰剂对照试验。 儿科。 2010年9月; 126(3):E526-33。 doi:10.1542/peds.2010-0433。 17。 Chau K等。 婴儿绞痛的益生菌:一项随机,双盲,安慰剂对照试验研究了乳酸杆菌REUTERI DSM 17938。 jpediatr。 2015年1月; 166(1):74-8。 doi:10.1016/j.jpeds.2014.09.020 18。 mi gl等。 乳酸杆菌在婴儿绞痛和岩性诱导的母体抑郁症中的有效性:一项前瞻性单一盲随机试验。 Antonie van Leeuwenhoek。 2015 Jun; 107(6):1547-53。 doi:10.1007/s10482-015-0448-9。 19。 Savino F等。 调节性T细胞和Toll样受体2和4 mRNA表达在用Reuteri DSM17938治疗的绞痛的婴儿中。 受益微生物。 2018年12月7日; 9(6):917-925。 doi:10.3920/bm2017.0194。 20。 Savino F等。Szajewska H等。Reuteri DSM乳酸杆菌17938用于母乳喂养婴儿的婴儿绞痛:一项随机,双盲,安慰剂对照试验。J Pediatr。2013年2月; 162(2):257-62。 doi:10.1016/j。jpeds.2012.08.004。15。Savino F等。Reuteri(美国型培养物收集菌株55730)与Simethicone在婴儿绞痛的治疗中:一项前瞻性随机研究。儿科。2007 JAN; 119(1):E124-30。 doi:10.1542/peds.2006-1222。 16。 Savino F等。 Reuteri DSM 17938在婴儿绞痛中:一项随机,双盲,安慰剂对照试验。 儿科。 2010年9月; 126(3):E526-33。 doi:10.1542/peds.2010-0433。 17。 Chau K等。 婴儿绞痛的益生菌:一项随机,双盲,安慰剂对照试验研究了乳酸杆菌REUTERI DSM 17938。 jpediatr。 2015年1月; 166(1):74-8。 doi:10.1016/j.jpeds.2014.09.020 18。 mi gl等。 乳酸杆菌在婴儿绞痛和岩性诱导的母体抑郁症中的有效性:一项前瞻性单一盲随机试验。 Antonie van Leeuwenhoek。 2015 Jun; 107(6):1547-53。 doi:10.1007/s10482-015-0448-9。 19。 Savino F等。 调节性T细胞和Toll样受体2和4 mRNA表达在用Reuteri DSM17938治疗的绞痛的婴儿中。 受益微生物。 2018年12月7日; 9(6):917-925。 doi:10.3920/bm2017.0194。 20。 Savino F等。2007 JAN; 119(1):E124-30。doi:10.1542/peds.2006-1222。16。Savino F等。Reuteri DSM 17938在婴儿绞痛中:一项随机,双盲,安慰剂对照试验。儿科。2010年9月; 126(3):E526-33。doi:10.1542/peds.2010-0433。17。Chau K等。 婴儿绞痛的益生菌:一项随机,双盲,安慰剂对照试验研究了乳酸杆菌REUTERI DSM 17938。 jpediatr。 2015年1月; 166(1):74-8。 doi:10.1016/j.jpeds.2014.09.020 18。 mi gl等。 乳酸杆菌在婴儿绞痛和岩性诱导的母体抑郁症中的有效性:一项前瞻性单一盲随机试验。 Antonie van Leeuwenhoek。 2015 Jun; 107(6):1547-53。 doi:10.1007/s10482-015-0448-9。 19。 Savino F等。 调节性T细胞和Toll样受体2和4 mRNA表达在用Reuteri DSM17938治疗的绞痛的婴儿中。 受益微生物。 2018年12月7日; 9(6):917-925。 doi:10.3920/bm2017.0194。 20。 Savino F等。Chau K等。婴儿绞痛的益生菌:一项随机,双盲,安慰剂对照试验研究了乳酸杆菌REUTERI DSM 17938。jpediatr。2015年1月; 166(1):74-8。 doi:10.1016/j.jpeds.2014.09.020 18。mi gl等。乳酸杆菌在婴儿绞痛和岩性诱导的母体抑郁症中的有效性:一项前瞻性单一盲随机试验。Antonie van Leeuwenhoek。2015 Jun; 107(6):1547-53。 doi:10.1007/s10482-015-0448-9。 19。 Savino F等。 调节性T细胞和Toll样受体2和4 mRNA表达在用Reuteri DSM17938治疗的绞痛的婴儿中。 受益微生物。 2018年12月7日; 9(6):917-925。 doi:10.3920/bm2017.0194。 20。 Savino F等。2015 Jun; 107(6):1547-53。 doi:10.1007/s10482-015-0448-9。19。Savino F等。调节性T细胞和Toll样受体2和4 mRNA表达在用Reuteri DSM17938治疗的绞痛的婴儿中。受益微生物。2018年12月7日; 9(6):917-925。 doi:10.3920/bm2017.0194。20。Savino F等。在乳酸杆菌REUTERI DSM17938治疗的绞痛的婴儿中哭泣的时间和RORγ/FOXP3表达:一项随机试验。J Pediatr。2018 Jan; 192:171-177.e1。 doi:10.1016/j.jpeds.2017.08.062。2018 Jan; 192:171-177.e1。doi:10.1016/j.jpeds.2017.08.062。
瑞士苏黎世大学和苏黎世大学临床神经科学中心医院神经外科系 (ELR);瑞士苏黎世大学和苏黎世大学临床神经科学中心医院神经内科系 (ELR、PR、MW);法国里尔大学 (ELR、PD);法国里尔 CHU 神经外科系神经肿瘤学系 (ELR);法国里尔 Oscar Lambret 中心肿瘤医学系神经内科系 (ELR);法国里尔 CHU 里尔 (PD);瑞士苏黎世大学医院苏黎世大学临床神经科学中心神经放射学系 (SW);比利时布鲁塞尔 EORTC 总部 (HL);荷兰阿姆斯特丹 Antoni van Leeuwenhoek 癌症研究所神经肿瘤学系 (DB、A.Co.);美国伊利诺伊州芝加哥西北大学 Robert H Lurie 综合癌症中心 Malnati 脑肿瘤研究所 (PK);意大利米兰圣拉斐尔生命健康大学和 IRCCS 圣拉斐尔医院神经放射学系(A.Ca.);法国维尔瑞夫古斯塔夫鲁西大学医院放射肿瘤学系(FD);意大利博洛尼亚 IRCCS 博洛尼亚神经科学研究所神经系统医学肿瘤学系(EF);美国坦帕莫菲特癌症中心和南佛罗里达大学神经肿瘤学系(PF);奥地利维也纳医科大学生物医学成像和图像引导治疗系(JF);科隆大学医学院和科隆大学医院神经内科系;于利希研究中心神经科学和医学研究所(INM-3);德国科隆大学亚琛、波恩、科隆和杜塞尔多夫综合肿瘤学中心(CIO)(NG);纳瓦拉健康研究所 (IdiSNA),西班牙纳瓦拉潘普洛纳 (JGP-L.);西班牙纳瓦拉潘普洛纳应用医学研究基金会实体肿瘤项目 (JGP-L.);西班牙纳瓦拉潘普洛纳纳瓦拉大学神经内科系 (JGP-L.);慕尼黑工业大学医学院,伊萨尔右翼医院,神经外科系 (JG);德国法兰克福大学医院神经放射学研究所 (EH);德国图宾根埃伯哈德卡尔斯大学神经放射学系 (JMH);丹麦奥胡斯大学临床医学系 (SL);丹麦奥胡斯大学医院肿瘤科 (SL);锡耶纳大学医学、外科和神经科学系放射肿瘤科;意大利波齐利 (IS) IRCCS Neuromed (GM);美国德克萨斯州休斯顿德克萨斯大学 MD 安德森癌症中心癌症医学部神经肿瘤学系 (BOB);荷兰阿姆斯特丹自由大学阿姆斯特丹 UMC 神经内科系 (TJP);都灵健康科学城和大学神经肿瘤学系,意大利都灵 (RR);德国波恩大学医院神经内科临床神经肿瘤学分部 (NS);德国雷根斯堡大学医学中心神经外科系 (NOS);荷兰乌得勒支大学医学中心乌得勒支脑中心神经内科系 (TJS);英国伦敦伦敦大学学院医院 NHS 基金会国家神经病学和神经外科医院 Lysholm 神经放射学系 (ST);英国伦敦伦敦大学学院神经病学研究所脑康复与修复系 (ST);荷兰鹿特丹鹿特丹大学医学中心伊拉斯姆斯 MC 癌症研究所脑肿瘤中心 (MvdB, MS);荷兰格罗宁根大学医学中心放射科医学影像中心 (AvdH); IMoPA Ingénierie Moléculaire et Physiopathologie Articulaire UMR7365 CNRS-UL,Vandoeuvre les Nancy,法国 (GV);弗朗索瓦巴克莱斯中心,阿尔泽特河畔埃施,卢森堡 (GV);放射学和核医学系,伊拉斯姆斯MC-鹿特丹大学医学中心,鹿特丹,荷兰(MS);路德维希马克西米利安大学神经外科系
微生物是没有显微镜的微小生命形式。他们约占地球生物的60%。“微生物”一词是指各种微观生物,包括细菌,真菌,病毒,古细菌和生物。这些微生物可能对人类无害或有害。一些微生物会引起严重的感染和疾病,而另一些微生物有助于维持环境平衡。古细菌是单细胞原核生物,具有与细菌不同的细胞壁结构。它们包含独特的脂质,使它们能够在极端环境中蓬勃发展。古细菌也可以在人类的肠道和皮肤中找到。微生物,包括微生物,是作为单细胞或簇存在的微观生命形式。有七种主要类型:细菌,古细菌,原生动物,藻类,真菌,病毒和多细胞动物寄生虫(Helminths)。古细菌由于其独特的细胞壁结构和缺乏肽聚糖而与真实细菌区分开。它们是可在极端条件下生存的原核细胞。一些古细菌组包括甲烷基因,卤素,热疗法和精神病/冷冻剂。这些生物使用各种能源,例如氢气,二氧化碳,硫或阳光(光营养形式)来存活。真核生物是包含核和复杂细胞器的单细胞或多细胞细胞。他们使用专业结构通过光合作用或吸收/摄入获得滋养。大多数真核细胞具有真实的核,并且主要是多细胞的。在数量,生物量和多样性方面,最大的微生物群是真核生物。鞭毛使用类似鞭子的结构进行运动;纤毛具有微小的跳动头发; Amoeboids采用伪虫; Sporozoans是非运动的。由几丁质组成的细胞壁支持各种营养方法:分解器吸收有机材料,共生体与植物形成关系,寄生虫与宿主有害相互作用。真菌产生称为菌丝的丝状管,骨料形成菌丝体。繁殖是通过释放孢子而发生的。非细胞实体由核酸核心组成,这些核酸核心被蛋白质涂层包围,缺乏繁殖外宿主细胞或独立代谢的能力。他们可以感染原核细胞和真核细胞,从而导致疾病。真核生物(如扁虫和round虫)共同称为蠕虫,在技术上不是微生物,而是微生物生命阶段,对于临床目的而言很重要。微生物的生物实体太小,无法用肉眼看到。例子包括细菌,古细菌,藻类,原生动物和微观动物(如尘螨)。尽管它们的重要性,但这些生物在历史上被低估了,直到Antonie van Leeuwenhoek发明了显微镜。发现微生物的发现使路易斯·巴斯德(Louis Pasteur)意识到许多疾病是由它们引起的,促进了巴氏杀菌的实践以确保食品安全。今天,我们认识到微生物在各种环境中的作用,包括水,土壤,动物皮肤和消化道。这种理解强调了免疫系统在预防疾病中的重要性。微生物在生态系统中起着重要作用,就像其他生物一样。细菌,特别是与引起疾病的病原体有关,但也具有帮助人类的有益特性。研究表明,古细菌与Eubacteria明显不同,甚至可能与人类更紧密相关。古细菌可以在各种环境中找到,包括水,土壤和我们的消化系统,它们有助于维持我们的健康。他们也可以在极端条件下繁衍生息,例如高温,酸度或咸味,使其成为温泉的常见居民和大多数生物体敌对的其他地区。几种动物物种以微观形式出现,包括节肢动物,旋转膜,loricifera,nematodes和原生动物。原生动物是一组单细胞的真核生物,其比细菌或古细菌的细菌更像动物和植物。它们会引起几种严重的人类疾病,例如疟疾,弓形虫病,贾第鞭毛虫,非洲卧铺疾病和chagas病。像酵母一样的微观真菌对人类无害,但在烘烤和酿造中起着至关重要的作用。酵母以糖为食,并将其转化为二氧化碳和乙醇,这会导致烘焙食品上升和发酵饮料变得陶醉。模具是微生物,与真菌具有某些特征但不是真正的真菌。它们包括感染植物并在过去引起毁灭性作物失败的致病霉菌。粘液模具是能够令人印象深刻的合作的单细胞生物,许多细胞聚集在一起以作为一个实体运行。科学家已经使用粘液模具来研究智能和解决问题。微观藻类曾经被认为是植物,但现在被认为是导致陆地植物的谱系的亲属。这些光合生物在整个历史中都很重要,有助于将氧气泵入大气中。藻类既可以通过清洁水,产生氧气或产生最终在我们的海鲜和饮用水中产生的有毒化合物来受益和伤害人类。科学家正在努力进行分类的其他许多微观生物。过去,许多微生物被聚集在“生物学家”的类别下,但是许多科学家现在认为该系统不足。在这里,科学家曾经使用文章文本,曾经使用一个称为“ Protista”的王国对无法识别为植物,动物或真菌的真核生物进行分类。然而,遗传分析揭示了该群体的许多成员与其他王国更紧密相关,而不是彼此之间的关系。不同的微生物可能对人类无害或有害,例如链球菌细菌,会导致链球菌喉咙和猩红热,以及乳酸杆菌,这有助于抵抗诸如胃流感之类的疾病。微生物提出的新发现已经根据光学显微镜研究推翻了先前的假设,揭示了对微生物的更复杂的理解。研究的进步导致了过去十年来我们对这些微小生命形式的理解的重大转变,并继续迅速发展。