摘要:为了进一步提高锂离子电池(LIBS)的能量密度和安全性,需要多功能电解质溶剂来替代常规的碳酸盐溶剂。在这项研究中,将不可氟化的氟化酯甲基3,3,3-三氟丙酸酯(MTFP)评估为具有LICOO 2阳性电极的高压LI电池的电解质溶剂。具有基于MTFP的电解质的LI/LICOO 2电池与具有常规的基于碳酸盐的电解质的电池相比具有较高的能力保留率在高压操作下,基于MTFP的电解质无容量损失或极化增加。 使用基于MTFP的电解质也可以改善LICOO 2电极的低温性能和热稳定性。 通过基于MTFP的电解质循环的LICOO 2电极对X射线光电子光谱进行分析表明,在电极表面上形成了薄且均匀的钝化层,从而产生了极好的环环性和LICOO 2的热稳定性。 与非易燃电解质有关的见解有助于不牺牲安全性的高能液体的发展。具有基于MTFP的电解质的LI/LICOO 2电池与具有常规的基于碳酸盐的电解质的电池相比具有较高的能力保留率在高压操作下,基于MTFP的电解质无容量损失或极化增加。使用基于MTFP的电解质也可以改善LICOO 2电极的低温性能和热稳定性。通过基于MTFP的电解质循环的LICOO 2电极对X射线光电子光谱进行分析表明,在电极表面上形成了薄且均匀的钝化层,从而产生了极好的环环性和LICOO 2的热稳定性。与非易燃电解质有关的见解有助于不牺牲安全性的高能液体的发展。
北京石墨烯技术研究院有限公司,中国航发北京航空材料研究院,北京 100095,中国 * 电子邮件:shaojiuyan@126.com 收稿日期:2020 年 4 月 25 日 / 接受日期:2020 年 6 月 17 日/发表日期:2020 年 8 月 10 日 LiCoO 2 正极在高压操作下会发生严重的副反应和快速的容量衰减。在本研究中,通过小尺寸石墨烯纳米片对 LiCoO 2 进行部分涂覆,以实验研究石墨烯改性机理在 4.5V 截止电压下改善 LiCoO 2 正极电化学性能方面。与原始 LiCoO 2 相比,G-LCO 在 2.5 和 4.5 V vs. Li + /Li 之间表现出更好的循环稳定性和倍率能力。进一步研究表明,部分涂覆石墨烯纳米片可以有效抑制电池阻抗的增加并缓解阴极电解质界面(CEI)的生长,从而获得出色的电化学性能。这项研究为提高高截止电压下 LiCoO 2 的循环稳定性和倍率性能提供了新的见解。关键词:LiCoO 2 ,部分涂层,石墨烯纳米片,CEI 层,高电压 1. 介绍
摘要 石榴石型固态电解质 (SSE) 因其高离子电导率、宽电化学窗口和显著的 (电) 化学稳定性而成为全固态锂 (Li) 电池的首选。然而,正极/石榴石界面差和正极负载普遍较低等棘手问题阻碍了它们的实际应用。在此,我们展示了通过放电等离子烧结构建增强正极/石榴石界面的方法,通过将 Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 (LLZTO) 电解质粉末和 LiCoO 2 /LLZTO 复合正极粉末直接共烧结成致密的双层,并以 5 wt% 的 Li 3 BO 3 作为烧结添加剂。具有 LiCoO 2 /LLZTO 交联结构的块状复合正极牢固地焊接到 LLZTO 层上,从而优化了锂离子和电子的传输。因此,一步集成烧结工艺实现了 3.9 Ω cm 2 (100 ◦ C) 的超低正极/石榴石界面电阻和高达 2.02 mAh cm −2 的高正极负载。此外,Li 3 BO 3 增强的 LiCoO 2 /LLZTO 界面还能有效减轻 LiCoO 2 的应变/应力,从而有助于实现卓越的循环稳定性。面积容量为 0.73 mAh cm −2 的块体型 Li|LLZTO|LiCoO 2 -LLZTO 全电池在 100 µ A cm −2 下经过 50 次循环后的容量保持率为 81.7%。此外,我们发现不均匀的锂沉积/剥离会导致间隙的形成,最终导致长期循环过程中锂和 LLZTO 电解质的分离,这成为大容量全电池中的主要容量衰减机制。这项工作深入了解了 Li/SSE 界面的退化,并提出了从根本上改善石榴石基全固态锂电池电化学性能的策略。
氧化物或复杂氧化物3(例如,LICOO 2,LIMN 2 O 4,LINI 0.6 CO 0.2 MN 0.2 O 4和LIFEPO 4等)4-7,
利用固态合成方法是回收花费锂离子蝙蝠的一种简单有效的方法。但是,验证其直接修复对完全耗尽的阴极材料的影响是必不可少的。在这项工作中,探索了通过固态合成直接修复完全失败的阴极材料的最佳条件。在850 C和N(li)/N(CO)比率为1:1的最佳再生条件下,支出的Licoo 2阴极材料的排放能力从21.7 mAh G 1到138.9 mAh G 1回收。再生材料表现出出色的电化学性能,甚至比商业Licoo 2大。此外,根据整个闭环回收过程,评估了电池生产过程中使用的各种回收技术和原材料的经济和环境影响,并确定了直接再生方法的优越的经济和环境可行性。2023作者。由Elsevier Inc.出版这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
• Lithium Cobalt Oxide(LiCoO 2 ) — LCO • Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO 2 ) — NCA • Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO 2 ) — NMC • Lithium Manganese Oxide (LiMn 2 O 4 ) — LMO • Lithium Iron Phosphate(LiFePO 4 ) — LFP • Lithium Titanate (LI2TIO3) - LTO
图 3. 使用再锂化方法直接回收 LIB 阴极。(a)电池循环过程中阴极表面退化的示意图。(b)废阴极中再锂化的图示。(c)废 LiCoO 2 、NCM111 和 NCM523 阴极材料在水热再锂化和短暂退火之前和之后的电化学性能数据。
电池技术不断进步,以降低成本提高能量密度、稳定性和安全性。如今,钴/镍基金属氧化物(如 LiCoO 2 、LiNi x Co y Mn z O 2 和 LiNi 0.53 Co 0.3 Al 0.17 O 2 )占据了商用锂纽扣电池正极材料的主导地位。1 然而,为了降低成本并实现更好的性能,2 研究人员继续寻找潜在的替代电极。层状过渡金属二硫属化物(MX 2 ;M = 过渡金属,X = S、Se、Te)为在正极中插入主体物质提供了另一个有希望的方向。自从 Whittingham 于 1976 年报道了二硫化钛 (TiS 2 ) 在碱金属中的动力学有利的插入反应以来,人们对其进行了广泛的研究。3 由于其良好的电导率、4 比 LiCoO 2 更高的能量密度和快速的循环速度,4 TiS 2 现在被认为是 LIBs 和超越锂离子(如 Na、K 和 Mg)在高功率系统中应用的有力竞争者。5 – 7 此外,TiS 2 为全固态电池的金属锂阳极结合提供了可能性,并可作为锂硫电池中锂多硫化物的吸收剂,以提高电池性能。8
锂离子电池(LIB)的独特特征,例如它们的长寿命和高能量密度特征,已促进了它们的全球知名度,并巩固了其作为从便携式电子设备到电动汽车的各种应用的最重要电源的地位。1 - 3液体仍然是消费电子产品和电动汽车中最广泛的电源,甚至是20 - 25年。4,5每年对LIB的需求已达到700 GWH,预计到2030年将攀升至空前的4.7 TWH。6 libs通常包含基于李的阴极(LiCoo 2,Limn 2 O 4,Lini X Mn Y Co Z O 2,Lini X Co Y Al Z O 2,LifePo 4),阳极(石墨),电解质(有机溶剂中的LIPF 6)和分离剂(聚丙烯或多乙烯)。7基于Li的阴极是Libs的关键组成部分;
在电极设计中寻求范式shi提供增强的二级锂离子电池(LIBS)的性能,对于将来的储能非常重要。1 - 3在追求高能量密度和低成本设备时,具有高度容量的晚期电极吸引了关注。4 - 7个LIB细胞通常由活性成分,导电材料和粘合剂组成,这些组件需要仔细调整胶体化学和界面工程。主动组件(例如LifePo 4和LiCoo 2系统)有助于能量密度,但约占商业液体总质量的40%,因此严重限制了其性能的提高和广泛的应用。8,诸如当前收集器,聚合物粘合剂和导电添加剂等非活性材料降低了能量密度,但对于改善机械稳定性和电流分布是必不可少的。9因此,构造厚的电极以促进高质量载荷