近年来,金属卤化物钙钛矿作为光伏器件中很有前途的光收集层,引起了越来越多的研究关注。迄今为止,使用螺环-OMeTAD 作为空穴传输层 (HTL) 是生产 PSC 的先决条件,其最高 PCE 可达 25% 以上。[1–3] 然而,在实现创纪录的 PCE 的同时,使用螺环-OMeTAD 也显著导致了钙钛矿层的快速降解。使用螺环-OMeTAD 给 PSC 带来的额外不稳定性源于添加到螺环-OMeTAD 中的掺杂剂,这些掺杂剂是改善 HTL 低固有电导率所必需的。[4–6] 截至撰写本文时,性能最高的 PSC 是使用锂双(三氟甲烷磺酰基)酰亚胺 (LiTFSI) 掺杂的螺环-OMeTAD 制备的,能够
图 3. 示意图说明了使用基于溶液的工艺通过有机硅弹性体冲压法(左下 - 无相分离的双连续)制造柔性 IL-GPE 薄膜,与旋涂法(右下 - 宏观相分离)相比。左上:DGEBA 环氧树脂、甲基四氢邻苯二甲酸酐 (MeTHPA) 固化剂、N-苄基二甲胺 (BDMA) 催化剂、G4(或四乙二醇二甲醚 (TEGDME))增塑剂、[EMIM][TFSI] 离子液体和 LiTFSI 盐的化学结构。该图经参考文献 [14] 许可转载。版权所有 2020 美国化学学会。
图3。示意图通过硅胶弹性体压印方法(与自旋涂层方法相比(右下 - 右下 - 右镜相距)相比,使用基于溶液的弹性体压印方法(左下 - 双连接)使用基于溶液的工艺制造了柔性IL-GPE膜。左上:DGEBA环氧树脂的化学结构,甲基四氢赤铁甲基酸酐(MECHPA)固化剂,N-苯并二甲基 - 胺(BDMA)催化剂,G4(或四甲基乙二醇乙二醇乙二醇二甲基乙二醇二甲基乙醚(TEGDME)和LITFSI imi imi imi imi imi imi imi imi, 盐。在参考文献[14]的许可下重印该图。版权2020美国化学学会。
作为全固态电池的核心,固态电解质由于其相对于传统液态电解质的优势而受到充分重视。1–3 各类固态电解质中,聚合物电解质 4–7 由于其优异的机械性能和分子改性而成为研究的重点。8 但其室温离子电导率较差,严重限制了固态锂电池(SSLB)的使用。目前,已采用多种方法来提高固态聚合物电解质的离子电导率,如引入活性填料和惰性填料 9。锂盐,例如 LiTFSI、g-LiAlO 2、10、11 和 LiN 3、12,通常用作活性填料,因为它们可以直接为聚合物体系提供 Li+。惰性填料如 TiO2(参考文献 13)、ZrO2 14 和 Al2O3(参考文献 15,16)可以通过降低聚合物结晶度或将聚合物链与 Li+偶联来提高体系的离子电导率。16,17
图2:(a)实验离子电导率的奇偶校验图对计算上的相似。红点带有液化石油气电荷,蓝色的指控带有DFT电荷。最左侧的离子电导率,使用nernst-Einstein方法计算。中心,用nernst-Einstein方法计算的离子电导率。用惠勒 - 纽曼方法计算的最直接的离子电导率。(b)实验玻璃传输温度的奇偶校验图针对计算计算的温度。金点是对纯聚合物的模拟,而绿色的聚合物与LITFSI的聚合物。(c)实验离子电导率对计算模拟的奇偶校验图,其中每个聚合物在经过验证测得的玻璃转变温度下模拟,并由玻璃转变偏移温度从纯聚合物(金)或用盐(绿色)计算的聚合物计算出的玻璃过渡偏移温度。(d)Spearman and Pearson等级相关指标,用于t exp的模拟。(e)在实验温度下模拟的最佳结果与离子电导率变化下的结果相比。
抽象锂离子电池(LIB)在包括运输,电子和太阳能在内的众多主要行业中起着至关重要的作用。虽然使用量和多氟烷基(PFAS)添加剂可以提高性能和寿命,但通过电池制造和回收操作将这些添加剂的偶然释放到环境中可能会对环境,人类健康和财务成果产生负面影响。当前的电池制造和回收废物处理方法并非旨在消除PFA,从而强调了对高级解决方案的需求。超临界水氧化(SCWO)已被证明可以在各种复杂的废物流中破坏PFA,从而使其成为有前途的解决方案。374Water的AirScWo技术用于处理含有HQ-115的解决方案,该解决方案是锂离子电池中商业使用的添加剂。HQ-115,也称为BIS(三氟甲磺酰基)酰亚胺(LITFSI),是一种双氟烷基磺酰亚胺(BIS-FASIS)的一种类型秒。这些结果表明,374Water的AirScWo技术可用于快速破坏基于PFA的LIB添加剂,并可能提高一旦商业化的LIB制造和回收利用的可持续性。
摘要:锂硫电池(LSB)是最有希望的下一代电池技术之一。第一个原型细胞比常规锂离子电池(LIB)显示出更高的特异能量,并且活性材料具有成本效益且普遍丰富。然而,Li-S电池仍然遭受了几个局限性,主要是周期寿命,细胞的频率以及缺乏组件生产价值链。由于该电池系统基于复杂的转换机制,因此电解质起着关键作用,不仅是针对特定能量的,而且还起着速率能力,循环稳定性和成本。在此,我们报告了基于乙二醇 - 乙酰溶剂的电解质,四甲氧基糖(TEG)和四甲氧基糖糖(TMG)。这些溶剂之前已经检查了超级电容器和Libs,但从未对LSB进行研究,尽管它们表现出了一些有益的特性,并且由于它们是几种化学物质的前体,因此已经建立了生产价值链。通过在TXG:DOL溶剂混合物中调节溶剂比和LITFSI浓度来建立一个专门适应的电解质组成。所获得的电解质显示出长的循环寿命以及较高的库仑效率,而无需使用Lino 3,这是一种正常导致细胞通信和安全问题的组件。此外,还进行了多层Li-S袋细胞中的成功评估。电解质得到了彻底的表征,并讨论了其硫转化机制。
发现液体电池电解质有助于促进稳定的固体电解质相互作用(SEIS)减轻树突形成,这对于在下一代能量密集的电池中启用锂阳极至关重要。与传统的电解质溶剂相比,基于四氢呋喃(THF)的电解质系统已经通过鼓励阴离子的分解(而不是有机溶剂),从而产生了无机富丽石的SEIS,从而在实现高稳定性锂阳极方面取得了巨大成功。在此,通过采用各种不同的锂盐(即LIPF 6,Litfsi,Lifsi和Lidfob),可以证明电解质阴离子会调节SEI的无机组成和产生的特性。通过新的分析时间二级离子质谱法,例如对深度促值的分层聚类和使用综合产量的组成分析,从每个电解质系统产生的SEI的化学组成和形态。值得注意的是,Lidfob电解质提供了一个异常稳定的系统,可实现锂阳极,以0.5 mAh g -1的电流密度传递> 1500个循环,在对称细胞中的容量为0.5 mAh g -1。此外,LI //使用该电解质的LFP细胞表现出高速率,可逆的锂储存,提供139 mAh g(LFP)-1
电极中的界面不稳定性控制着锂离子电池的性能和寿命。虽然阳极上固体电解质界面(SEI)的形成引起了很多关注,但仍然缺乏对阴极上阴极 - 电解质界面(CEI)形成的阳极界面。为了填补这一空白,我们通过利用Operando数字图像相关性,阻抗光谱和冷冻X射线光电学光谱镜来报告有关磷酸锂,LifePo 4阴极的动态变形。Lifepo 4阴极在LIPF 6,LICLO 4或LITFSI中循环。在第一个周期之后,锂离子插入导致电化学菌株与(DIS)递送的状态之间几乎线性相关,而与电解质化学无关。但是,在LIPF 6中的第一个电荷 - 含有电解质的第一个电荷期间,在阳极电流上升开始时有明显的不可逆的正应变演化,并且在4.0V左右的电流衰减。阻抗研究表明,在相同的潜在窗口中表面阻力的增加,表明在阴极上形成了CEI层。CEI层的化学性质的特征是X射线光电子光谱。LIF,在第一个充电期间,电压以高于4.0 V的电压出现。我们的方法为阴极电极上CEI层的形成机理提供了新的见解,这对于为高性能电池开发可靠的阴极和电解质化学物质至关重要。
摘要 利用拉曼光谱、差示扫描量热法、温度调制差示扫描量热法、介电光谱和流变学研究了将液体电解质限制在聚合物基质中的影响。聚合物基质由热固化乙氧基化双酚 A 二甲基丙烯酸酯获得,而液体电解质由基于乙基咪唑阳离子 [C 2 HIm] 和双(三氟甲烷磺酰基)酰亚胺 [TFSI] 阴离子的质子离子液体组成,掺杂有 LiTFSI 盐。我们报告称,受限液相表现出以下特征:(i)结晶度明显降低;(ii)弛豫时间分布更宽;(iii)介电强度降低;(iv)在液体到玻璃化转变温度 (T g ) 下协同长度尺度降低;和 (v)局部 T g 相关离子动力学加速。后者表明两个纳米相之间的界面相互作用较弱,而几何限制效应较强,这决定了离子动力学和耦合的结构弛豫,从而使 T g 降低约 4 K。我们还发现,在室温下,结构电解质的离子电导率达到 0.13 mS/cm,比相应的本体电解质低十倍。三种移动离子(Im +、TFSI - 和 Li +)对测量的离子电导率有贡献,从而隐性降低了 Li + 的迁移数。此外,我们报告称,所研究的固体聚合物电解质表现出将机械载荷转移到结构电池中的碳纤维所需的剪切模量。基于这些发现,我们得出结论,优化的