(例如在智能手机或电动汽车中)。不幸的是,这些现有的储能设备仍然相当不可持续、昂贵,且容易起火,或在发生故障时爆炸。[1,2] 传统储能设备中最常见的正极材料是无机材料,例如 LiCoO 2 、LiFePO 4 或 LiMn 2 O 4,并且通常基于不可持续且有毒的重金属。[3,4] 就可持续性和价格而言,特别是基于有机电极的储能设备,其利用具有氧化还原活性的有机材料,被认为是下一代电池的有希望的候选者。[5–7] 与通常在充电和放电过程中通过插层机制运行的传统无机电极不同,有机储能装置的特点是 Li + 在表面附近不同的有机氧化还原活性位点发生存储-释放反应。由于不存在晶格转变、传输限制和发热等问题(这些问题通常会缩短无机正极材料的使用寿命),因此可以实现更高的倍率性能和更长的循环寿命。此外,有机储能设备可以成为可穿戴电子产品中柔性和可拉伸设备的绝佳候选。[8,9]
摘要:间歇性和瞬时可再生能源迫切需要发展具有高功率能量密度的本质安全电能存储技术。水系锂离子电池(ALIB)由于其不易燃的特性而成为一种很有前途的集成技术。然而,受阳极材料的限制,它们的能量密度与非水系电池的能量密度存在相当大的差距。在此,首次尝试将 Wadsley-Roth 相铌基氧化物(M-Nb-O)用于水系锂离子阳极。通过与 M-Nb-O 阳极(Zn2Nb34O87)的代表物配对,ALIB 的输出电压、能量密度和功率密度显着增加,长期循环寿命显着提高。单独来看,能量型全电池(NCM811// Zn2Nb34O87)可产生高记录密度能量(191.5 Wh kg −1),平均放电电压高达约 2.25 V,而功率能量型全电池(LiMn2O4//Zn2Nb34O87)在超高粉末密度 16 489 W kg −1 下表现出优异的倍率性能,能量密度高达 30.0 Wh kg −1。
摘要:我们利用飞行时间二次离子质谱 (TOF-SIMS) 和 X 射线光电子能谱 (XPS) 结合电化学技术对循环高镍(LiNi 1-x M x O 2 ,M = 金属)、富锂(Li 1+x Mn y M 1-xy O 2)和高压尖晶石(LiMn 1.5 Ni 0.5 O 4 )电极进行了全面研究,以更好地了解它们在循环过程中阴极-电解质中间相 (CEI) 结构的变化。TOF-SIMS 提供有关每个电极表面膜含量的碎片特定信息。高镍正极显示出厚的表面膜,最初含有 Li 2 CO 3,随后在循环过程中形成氧化有机碳酸盐。富锂电极表面膜在首次活化循环期间会形成强特性,其中释放的 O 2 会氧化有机碳酸酯形成聚合碳并分解 LiPF 6 。高压尖晶石电极在标准电解质稳定性窗口之外运行,产生活性氧化电解质物质,进一步分解 LiPF 6 。通过 TOF-SIMS 测量这些不同化学碎片的分布和浓度,最终通过循环高镍、富锂和高压尖晶石电极的彩色高分辨率图像进行总结。
摘要:随着全球能源优先级转向可持续替代方案,对创新储能解决方案的需求变得越来越重要。在这种景观中,固态电池(SSB)成为主要的竞争者,就能量密度,安全和寿命而言,对传统的锂离子电池进行了显着升级。本综述提供了对SSB的彻底探索,重点是传统和新兴的阴极材料,例如氧化锂(LiCoo 2),含锰氧化锂(Limn 2 O 4),磷酸锂(LifePo 4),以及新颖的硫化物和氧化物。这些材料与固体电解质的兼容性及其各自的益处和局限性进行了广泛讨论。评论深入研究了阴极材料的结构优化,涵盖了纳米结构,表面涂层和复合配方等策略。这些对于解决电导率限制和结构性漏洞等问题至关重要。我们还仔细检查了电气和热性能在维持电池安全性和性能中的重要作用。得出结论,我们的分析强调了SSB在储能未来的革命作用。尽管已经取得了重大进步,但前进的道路带来了许多挑战和研究机会。本评论不仅承认这些挑战,而且还指出了对可扩展制造方法的必要性以及对电极 - 电解质相互作用的更深入的了解。它旨在引导科学界解决这些挑战并推进SSB的领域,从而为环保能源解决方案的发展做出重大贡献。
本文研究了二元混合电极的电化学行为,其中包括等效量的锂离子电池活性材料,即lini 0.5 MN 0.3 CO 0.3 CO 0.2 O 0.2 O 2(NMC),LIMN 2 O 4(LMO),寿命0.35 MN 0.65 MN 0.65 PO 4(LFMP)和Lifepo 4(Lifepo 4(life testro controtro)和lif intres intros introse intros intros introse contring intring intring intring intring in actring in acting and a) Operando X射线衍射(XRD)。所有可能的50:50混合组合进行了研究,并在连续和脉冲电荷和放电过程中遵循混合组分之间的电流分布。结果表明,单个材料的电压曲线对当前分布的显着影响,每个组件的有效C率在整个电荷状态(SOC)中变化。脉冲解耦电化学测试揭示了在放松过程中混合成分之间的电荷交换,展示了“缓冲效果”,该效应也已通过时间分辨的操作数XRD实验在实际混合物中精心考虑考虑束诱导的效果的真实混合物中捕获。发现电荷转移的方向性和大小取决于组件和细胞SOC的性质,也受温度的影响。这些依赖性可以合理化,考虑到混合组成部分的热力学(电压谱)和反应动力学。这些发现有助于促进对混合电极内部动力学的理解,这是对合理设计的有价值的见解,以满足锂离子电池的多样化运营需求。
本期特刊旨在汇集高质量的论文,重点介绍各种可充电电池材料的最新发展,并重点介绍当今最重要和最有效的储能设备之一的科学和技术,即锂离子、锂硫、锂空气和钠离子电池。高性能电池技术被认为是通过大规模应用于电动汽车实现深度脱碳的关键因素。此外,通过大量关注推广可持续和可再生能源,可持续经济发展是可能的。这些间歇性能源系统的开发需要适当的储能方法,其中电池作为多功能储能设备发挥着重要作用。这些贡献提供了对一系列材料(电池的基本元素)的深入了解,其方法可以从纳米到宏观。在这些电池中,不仅阴极和阳极材料,而且其他组件(如电解质、添加剂和隔膜)在确定其能量密度、寿命、功率能力、安全性和成本方面也起着至关重要的作用。通过引入源于特殊形貌和结构、适宜的颗粒尺寸、表面工程、掺杂和复合形成等各种功能来设计和合成材料以获得稳定的电化学性能,人们对此给予了特别的关注。因此,对电池材料的广泛研究在生产未来可持续发展的先进可充电电池中发挥着越来越重要的作用。元素掺杂取代锂或氧位已成为提高层状正极材料电化学性能的一种简单有效的技术。与单一元素掺杂相比,Wang 等 [1] 在研究 Na + /F − 阳离子/阳极共掺杂对 LiNi 1/3 Mn 1/3 Co 1/3 O 2 的结构和电化学性能的影响方面做出了前所未有的贡献。三维和二维势图的第一性原理计算表明,Na 掺杂可以降低势阱并增加 Li + 离子的去除速率 [2]。采用溶胶-凝胶法,以乙二胺四乙酸 (EDTA) 为螯合剂,合成了共掺杂的 Li 1-z Na z Ni 1/3 Mn 1/3 Co 1/3 O 2-z F z (z = 0.025) 和纯 LiNi 1/3 Co 1/3 Mn 1/3 O 2 材料。结构分析表明,Na + 和 F − 掺杂剂分别成功掺入 Li 和 O 位。共掺杂使 Li 板间距更大、阳离子混合程度更低、表面结构更稳定,从而大大提高了正极材料的循环稳定性和倍率性能。Na/F 共掺杂电极在 1C 倍率下提供 142 mAh g −1 的初始比容量(0.1C 时为 178 mAh g −1),并且在 1C 倍率下经过 1000 次充电-放电循环后仍能保持其初始容量的 50%。Bubulinca 等人 [3] 对采用优化的无粘合剂技术制备的二元和三元自立复合正极材料进行了比较研究。使用聚(乙二醇)对异辛基苯基醚(Triton X-100)作为表面活性剂,制备了二元“岛桥”LiMn2O4/碳纳米管(LMO/CNT)复合材料和三元“构造板-岛桥”LiMn2O4/CNTs/石墨烯仿生结构。在
水性Zn-Ion电池(Azibs)代表了锂后系统中一种安全可持续的技术,尽管对阴极处的物质行为的不良理解阻止了Effi Cient Azibs的全面发展。Znmn 2 O 4(ZMO)被认为是锂离子电池的良好确定的Limn 2 O 4阴极的阴极候选者之一,但是在水性环境中锌离子存在的情况下,其电化学机制尚不清楚并且仍在辩论。在这项工作中,我们通过脉冲激光沉积(PLD)合成了纳米结构的ZMO薄膜,并通过微渗透,光谱和衍射技术进行了广泛的表征,评估了膜的特性和退火条件如何影响膜的特性。自给自足的性质和对纳米级的高度控制性使薄膜成为研究水溶液中材料的电化学的理想模型系统,并强调膜性能对其电化学反应的影响。我们强调了氧气在膜孔隙率调节中的关键作用,以及沉积压力和退火温度的综合作用,以产生具有量身定制特性的膜在形态,结晶度和Zn stoichiimetry方面。报道了一种复杂的氧化还原机制,涉及多种并发反应和氢氧化锌硫酸锌水合物(ZHS)的形成,以及膜孔隙率对膜以较高扫描速率的伏安行为的影响。我们的结果证实了ZMO材料的复杂电化学机制,它不仅涉及Zn 2 +插入/提取/提取,而且还涉及Mn 2 +从电解质中的关键参与,并为工程ZMO基的纳米级设计铺平了道路。