•MDP空间中V ∗和Q ∗的Lipschitz连续性的理论研究; •根据MDP之间的局部距离提出的实用,非负转移方法; •在终身RL设置中应用此转移方法的PAC-MDP算法的建议和研究。
数据敏感度量自然出现在机器学习中,并且在一些著名方法中起着核心作用,例如 k-NN 图方法、流形学习、水平集方法、单链接聚类和基于欧氏 MST 的聚类(详情见第 5 节和附录 A)。构建合适的数据敏感度量是一个活跃的研究领域。我们考虑一个简单的数据敏感度量,它有一个底层流形结构,称为最近邻度量。该度量最早在 [CFM + 15] 中引入。它及其近似变体在过去已被多位研究人员研究过 [HDHI16、CFM + 15、SO05、BRS11、VB03]。在本文中,我们展示了如何精确计算任意维度的最近邻度量,这解决了任何基于流形的度量最重要和最具挑战性的问题之一。