意大利电力存储容量审批 (Approvvigionamento di Capacità di Stoccaggio Elettrico”: MACSE) 是一项旨在促进意大利电力存储容量增长的监管举措。这种增长对于适应能源结构中日益增加的非可编程可再生能源至关重要。通过提供清晰的长期定价信号,MACSE 寻求吸引投资进入存储系统市场。根据 MACSE,新建的存储设施将通过长期合同获得补偿,以欧元/兆瓦时年为单位提供溢价。该溢价将通过竞争性拍卖程序确定。作为交换,参与 MACSE 的存储设施运营商必须分配相应的存储容量以提供所谓的时移产品。这些市场上新颖的产品使市场运营商能够作为虚拟存储进行市场交易。此外,鼓励运营商在辅助服务市场(意大利语“Mercato dei Servizi di Dispacciamento”: MSD)上提供任何未使用的时移容量。背景
分子系统发育学诞生于20世纪中叶,当时蛋白质和DNA测序的出现为研究生物体之间的进化关系提供了一种新颖的方式。该学科的第一个50年可以看作是对解决力量的长期追求。目标 - 重建生命之树 - 似乎是无法到达的,方法进行了严重辩论,并且数据限制了。也许是出于这些原因,即使是整个方法的相关性,也反复质疑,作为所谓分子与形态辩论的一部分。通常在长期存在的难题中结晶的争议,例如土地植物的起源,胎盘哺乳动物的多样化或原核生物/真核生物鸿沟。随着基因和物种样本的规模增加,其中一些问题已解决。多年来,分子系统发育学已经逐渐从一个辉煌的革命性思想演变成一个以可靠建造树木的问题为中心的成熟研究领域。在2000年代后期,这种逻辑进展突然中断。高通量测序出现,该领域突然移入了完全不同的东西。对基因组规模数据的访问深刻地重塑了方法论挑战,同时打开了惊人的新应用观点。系统发育学使系统学领域占据了本世纪最令人兴奋的研究领域之一 - 基因组学。这是这本书的目的:在当前的系统基因组时代,我们如何做树木以及我们对树木的工作。第2部分涵盖了数据问题过渡到基因组规模数据的一个明显的实际结果是,最广泛使用的树木建造方法基于序列进化的概率模型,需要密集的算法优化才能适用于当前数据集。本书的第1部分中考虑了此问题,其中包括对马尔可夫模型(第1.1章)的一般介绍以及如何最佳设计和实施最大可能性(第1.2章)和贝叶斯(第1.4章)系统发育推论方法的详细描述。现代系统基因组学计算方面的重要性是,有效的软件开发是该领域众多研究小组的主要活动。我们承认这一点,并包括七个“如何”章节,其中介绍了主要的系统基因组工具的最新更新 - RAXML(第1.3章),门类(第1.5章),MACSE(第2.3章),BGEE(第4.3章),Revbayes(Revbayes(第5.2章),Beagle(第5.4章),和BPP(第5.4章),和BPP(5.6)。基因组规模的数据集非常大,以至于统计能力是过去几十年中系统发育推断的主要限制因素,不再是主要问题。大量数据集倾向于扩大它们传递的信号(无论是生物学还是人工),因此偏见和不一致而不是采样方差,是基因组时代系统发育推断的主要问题。