《美国国家交通和机动车安全法》规定,在客户招标以进行维修后,必须在合理的时间内进行适当维修此类召回此类类型的车辆。车辆招标后的六十天内未能维修是表面上未能在合理时间内修复的证据。如果条件在合理的时间内没有充分维修,则客户可能会有权免费获得相同或合理的同等车辆,或者退还购买价格的不太合理折旧津贴。要避免提供这些繁重的补救措施,必须付出每一努力,以迅速安排与每个客户的约会并尽快修理其车辆。在召回通知信中,如果在合理的时间内未完成召回,则告诉客户如何联系美国国家公路交通安全管理局。
摘要。定向能量沉积增材制造 (DED-AM) 是目前正在探索的主要 AM 技术之一,用于修复航空航天工业中的高价值部件以及大型金属部件的自由成型制造。然而,由于缺乏对底层工艺-结构-性能关系的基本了解,阻碍了 DED-AM 用于生产或修复安全关键部件。本研究使用原位和操作同步加速器 X 射线成像来提供对激光-物质相互作用及其对熔池几何形状影响的更好基本理解。结合过程建模,这些独特的观察说明了工艺参数如何影响 DED-AM 熔池几何形状。校准后的模拟可用于指导工业增材制造工艺的微观结构和质量控制。
南极沿海冰盖 (AIS) 的表面融化决定了其冰架的生存能力和地面冰盖的稳定性,但迄今为止,现场融化速率估计值非常少。这里,我们提供了来自东南极半岛 (AP) 和东南极洲沿海毛德皇后地 (DML) 的九个站点的现场表面融化速率和能量平衡的基准数据集,其中七个位于 AIS 冰架上。来自八个自动气象站和一个人工气象站 (Neumayer) 的气象时间序列,长度从 15 个月到近 24 年不等,作为能量平衡模型的输入,以获得一致的表面融化速率和能量平衡结果。我们发现表面融化速率表现出很大的时间、空间和过程变化。沿海 DML 的间歇性夏季融化主要由短波辐射的吸收驱动,而东 AP 的非夏季融化事件发生在焚风事件期间,焚风事件迫使大量向下的显热湍流通量。我们使用原位表面融化速率数据集来评估区域大气气候模型 RACMO2 的融化速率,并验证 QuikSCAT 卫星的融化产品。
南极沿海冰盖 (AIS) 的表面融化决定了其冰架的生存能力和地面冰盖的稳定性,但迄今为止,现场融化速率估计值非常少。这里我们提供了来自东南极半岛 (AP) 和东南极洲沿海毛德皇后地 (DML) 的九个站点的现场表面融化速率和能量平衡的基准数据集,其中七个位于 AIS 冰架上。来自八个自动气象站和一个人工气象站 (Neumayer) 的气象时间序列,长度从 15 个月到近 24 年不等,作为能量平衡模型的输入,以获得一致的表面融化速率和能量平衡结果。我们发现表面融化速率表现出很大的时间、空间和过程变化。沿海 DML 的间歇性夏季融化主要由短波辐射的吸收驱动,而东 AP 的非夏季融化事件发生在焚风事件期间,焚风事件迫使大量向下的显热湍流通量。我们使用原位表面融化速率数据集来评估区域大气气候模型 RACMO2 的融化速率,并验证 QuikSCAT 卫星的融化产品。
图1。使用荧光团 - 猝灭剂系统对DNA二级结构进行高通量热力学测量。a。折叠(淬火)和展开(荧光)状态的DNA分子的示意图。b。固定在测序芯片表面上的荧光DNA簇的图像。顶部:仅具有荧光团偶联的寡核(CY3),以及荧光团和淬火剂偶联的寡核能的图像。底部:每个图像中DNA分子的示意图。所有图像均标准化为超稳定的茎和重复对照变体,以依赖温度对荧光和淬火的影响,如图S1D。 c。库型和淬灭剂偶联的寡核苷酸的恒定序列结合位点之间的库变体设计。 红色代表每种类型内的支架核苷酸恒定,蓝色可系统排列的变量('n')。 每个类下的数字指示每个类中唯一序列的数量。 d。对照构建体的荧光测量,其中荧光团和淬灭器之间的单链距离在单核苷酸步骤下增加。 橙色线显示理论拟合。 e。在较高的温度(熔体曲线,X轴)和降低温度(退火曲线,Y轴)f的情况下,∆G 37的相关性来自图书馆变体。熔融曲线的代表性示例在GC含量方面有所不同。 g。三个熔体和一个退火曲线实验重复的∆G 37的Pearson相关性。S1D。c。库型和淬灭剂偶联的寡核苷酸的恒定序列结合位点之间的库变体设计。红色代表每种类型内的支架核苷酸恒定,蓝色可系统排列的变量('n')。每个类下的数字指示每个类中唯一序列的数量。d。对照构建体的荧光测量,其中荧光团和淬灭器之间的单链距离在单核苷酸步骤下增加。橙色线显示理论拟合。e。在较高的温度(熔体曲线,X轴)和降低温度(退火曲线,Y轴)f的情况下,∆G 37的相关性来自图书馆变体。熔融曲线的代表性示例在GC含量方面有所不同。g。三个熔体和一个退火曲线实验重复的∆G 37的Pearson相关性。h。各种构造类别的标准误差为∆G 37的函数。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月20日。; https://doi.org/10.1101/2024.01.01.08.574731 doi:biorxiv Preprint
网站:www.lookpolymers.com电子邮件:sales@lookpolymers.com电话:+86 021-51131842手机:+86 13061808058 Skype Skype:LookPolymers地址:United North Road 215
摘要:生物化和可生物降解的聚酯等聚酯(丁基琥珀酸酯 - 丁二烯脂肪酯)(PBSA)正在成为单使用应用的油基热塑料的有希望的替代品。然而,PBSA的机械性和流变特性受其在熔体加工过程中的热机械灵敏度的影响,也阻碍了PBSA机械回收。传统的反应性熔体加工(RP)方法使用化学添加剂来抵消这些缺点,从而损害了可持续性。这项研究提出了一种在PBSA融化过程中的绿色反应性方法,基于对其热量降解行为的全面理解。在熔体加工过程中控制的降解路径的假设下可以促进分支/重组反应而不添加化学添加剂,我们旨在增强PBSA流变学和机械性能。使用内部批处理器进行了对PBSA的在线流变行为的深入研究,探索参数,例如温度,螺丝旋转速度和停留时间。评估了它们对PBSA链剪辑,分支/重组和交联反应的影响,以确定有效RP的最佳条件。结果表明,特定的处理条件,例如12分钟的处理时间,200°C温度和60 rpm的螺丝旋转速度,促进了PBSA中长链分支结构的形成。RP策略还改善了PBSA机械回收,从而使其成为低密度聚乙烯(LDPE)的潜在替代品。这些结构变化导致反应PBSA流变学和机械性能的显着增强,弹性模量增加了23%,屈服强度增加了50%,张力强度提高了80%。最终,这项研究表明了反应性熔体加工过程中热机械降解的高度控制可以改善材料的性能,从而实现可靠的机械回收,这可以作为其他可生物降解聚合物的绿色方法。关键词:PBSA,可生物降解聚合物,绿色反应性加工,化学修饰,回收,机械性能,NMR,生物饲养聚合物■简介
摘要:选择性激光熔化(SLM)是一种金属粉末融合添加剂制造工艺,具有为航空航天和生物医学植入物制造复杂组件的潜力。大规模适应受到阻碍。非均匀熔体池尺寸是这些缺陷的主要原因。由于先前的粉末床轨道加热而导致的熔体池尺寸变化。在这项工作中,对相邻轨道产生的热量的效果进行了建模,并设计了反馈控制。控制的目的是调节熔体池横截面区域,以拒绝粉末床内相邻轨道的热量的影响。SLM过程的热模型是使用集总池体积的能量平衡开发的。将来自相邻轨道的干扰热建模为熔体池的初始温度。将热模型与干扰模型结合起来,导致了一个非线性模型,描述了熔体池的演化。PID是一种经典的反馈控制方法,用于最大程度地减少轨道干扰对熔体池面积的影响。在已知的环境中为所需的熔体池区域调整了控制器。仿真结果表明,在扫描16毫秒内的粉末层多个轨道的扫描过程中,所提出的控制器调节所需的熔体池面积,并在0.04 mm的长度内将激光功率降低了10%,大约在五个轨道中。这减少了孔形成的机会。因此,它提高了使用SLM工艺制造的组件的质量,从而减少了缺陷。