说明•事件:rangoli竞争•主题:微生物的形态•只有一个属(例如,必须采取青霉 /颤音)•编号< / div>参与者每队:02•要使用的颜色:最大2•rangoli的大小:半径1.5英尺的圆圈•名称应从圆圈中写出。
仪器会产生扩大的小物体图像,从而使观察者在Ascale时方便地进行检查和分析时非常近距离观察。显微镜的放大功率是对所检查的对象的数量的表达,似乎是放大的,并且是无尺度比率。
弗罗茨瓦夫科技大学,纳米计量学系 (1) ORCID: 1. 0000-0003-1565-7278; 2. 0000-0001-6649-1963; 3. 0000-0001-6218-0658; 4.0000-0001-9197-1862; 5. 0000-0002-5146-2868; 6. 0000-0003-1300-6420; 7.0000-0001-8482-301X; 8. 0000-0002-3187-1488; 9. 0000-0003-4182-9192 doi:10.15199/48.2024.06.41 教育扫描隧道显微镜——用于纳米技术教学和纳米计量研究的开放式架构平台摘要。在本文中,我们提出了一个教育性扫描隧道显微镜平台,可以研究纳米级的表面。该设计结构的主要优点是其开放式架构,可以进行各种实验,包括教学实验和高度专业化的科学工作。该系统是弗罗茨瓦夫科技大学电子、光子学和微系统学院纳米计量学系文凭和博士论文的一部分。 (教育扫描隧道显微镜——用于教育和纳米计量研究的开放式架构平台)摘要。在本文中,我们介绍了内部硬件和软件平台,可以演示扫描隧道显微镜 (STM) 的设计和操作以及衍生的诊断技术,从而能够确定纳米级表面的特性。所述设置的主要优点是开放式架构,这对于全面了解构造的某些方面以及执行测量的方式至关重要。由于平台采用模块化设计,学生可以通过基础培训课程和文凭课程等各种形式的学习活动来提高自己的能力。所描述的解决方案是一种独特的设置,它是利用弗罗茨瓦夫科技大学纳米计量学系研究人员的经验开发的。关键词:扫描探针显微镜、扫描隧道显微镜、纳米计量学、控制和信号电子学。简介扫描隧道显微镜 (STM) 自 1982 年开发以来 [1,2],已发展成为一种先进的诊断技术,它与其他样品制备技术和分析工具相结合,能够以原子分辨率洞察材料的结构 [3–6]。尽管扫描隧道显微镜的概念看似简单,但实际设置在实施特定测量模式以及仪器方面却很复杂。然而,STM 背后的理念仍然足够简单,本土建筑商可以开发自己的测量系统——有很多自己动手 (DIY) 的项目可以找到 [7]。此外,控制和测量分析软件领域也正在快速发展[8,9]。与市售机器相比,开发的显微镜并不复杂,也不是开放式装置。在未来纳米技术专家的教育过程中,获得 STM 设计和操作的透明度是一个重要问题。培训旨在提供必要的知识和经验,教他们如何准备和使用 STM,以获得样品表面的原子分辨率成像。特别是,处理样品、准备扫描尖端、配置系统的特定部分、优化测量参数以及数据处理和分析等问题是培训的重要组成部分。很少有实验室会自下而上地开设扫描探针显微镜 (SPM) 课程 [10]。在这种情况下,需要为学生提供纳米技术工具 [11]。为了提供实现上述培训条件的环境,纳米计量学系开发了一种特定的硬件软件设置。与商用 STM 系统不同,它在信号处理和采集方面提供了完全透明性,包括隧道电流、PID 信号(特别是 Z 和误差信号)、扫描控制(X、Y)信号和输出数据。系统由专门的
•在1932年,西门子和Halske的恩斯特·拉布克(Ernst Lubcke)从原型电子显微镜中构建和获得图像,应用了Rudenberg专利应用中描述的概念。五年后(1937年),该公司资助了恩斯特·鲁斯卡(Ernst Ruska)和博多·冯·博里斯(Bodo von Borries)的工作,并雇用了赫尔穆特·鲁斯卡(Helmut Ruska)(恩斯特的兄弟)为显微镜开发应用程序,尤其是使用生物学标本。同样在1937年,曼弗雷德·冯·阿登(Manfred Von Ardenne)率先扫描电子显微镜。第一个实用的电子显微镜由Eli Franklin Burton和学生Cecil Hall,James Hillier和Albert Prebus于1938年在多伦多大学建造。西门子在1939年产生了第一个商业传输电子显微镜(TEM)。尽管当代电子显微镜能够进行两百万驱动器的放大倍数,但作为科学仪器,它们仍然基于Ruska的原型。
微塑料拉曼显微镜比傅里叶变换红外 (FTIR) 显微镜更有效地检测小于 10 µm 的颗粒,使其成为分析微塑料的理想技术,无论是来自自然环境还是瓶装水中。在这个例子中,我们可以看到使用 LabRAM Soleil 进行分析的速度有多快。借助 Mosaic 和 ParticleFinder 应用程序,可以完全自动化分析大型过滤器上的数千个颗粒。LabRAM Soleil 全自动激光开关限制了荧光背景(源于有机杂质、着色剂和其他添加剂)的影响,这些荧光背景通常会遮蔽拉曼信号并阻止识别底层聚合物。
在当今技术驱动的社会中,许多重要的电子、磁性和光子器件的生产规模不断缩小。为了最大限度地提高元件密度并进一步减小尺寸,这些器件也被制造成多层、部分金属化的结构。一个众所周知的例子是微电子器件/集成电路,其结构可以有一层到五层或更多层,厚度可能只有 2-10 微米(图 1)。在该器件的各个层中,重要特征的尺寸范围可以从大约 100 微米到数十纳米。这种材料、厚度和分辨率超出了传统光学显微镜的范围,但对材料科学、微电子学和新兴的纳米科学界来说至关重要。
最近几十年,这两个替代性环境市场一直在迅速扩展,也广泛用于自然保护目的。因此,他们也可以激发促生物多样性的行动。尽管如此,最近出现了对现有信贷/抵消工具的严厉批评。科学影响评估表明,在目前的形式中,许多人提供了“热空气”,而不是其他环境保护:它们并不能保护真正受到威胁的事物,也没有补贴没有信贷的新环境资产。通过提供减轻行动的幻觉感,一种不真正可信的信用显然会使情况变得更糟 - 假装解决环境危机,但实际上未能产生积极的差异。信用或偏移可能在最坏的情况下成为烟雾和镜子的复杂工具,以照常证明业务是合理的。