对于希望利用AI的组织,LLM周围有很多竞争。但是,当涉及模型和AI服务建设者和领导者在工作场所使用时,我们的调查结果表明,Chatgpt(引起世界关注的第一个LLM)仍然是最常用的(27%)。但是,重要的是要注意,Microsoft的Azure AI(18%的受访者使用)使公司可以访问OpenAI的LLM,这使OpenAI模型的总使用量更高。(同样,亚马逊基岩提供了对多个LLM的访问。)之后,Google Gemini的使用率为17%。其余的包装在8%到4%之间的使用情况:Meta的Llama(8%),Amazon Bedrock(7%),人类的Claude(7%),Cohere's Suite(5%)和Mistral AI(4%)。4%的报告使用我们的调查中未包含的工具,而3%不使用任何LLM。
但即使是最有价值的资产也需要购买和融资——因此成本很重要,而 Invinity 在 2022 年取得了重大进展。产品设计简化、新的供应链合作伙伴和新的、更精简的设施降低了我们的生产成本,使我们能够以有利于我们盈利的价格出售产品,同时保持客户业务案例的积极性。我们还努力进一步降低客户在数十年而不是数年的使用寿命内运营和维护我们产品的成本,真正最大限度地提高他们的投资回报率。也许最重要的是,对全生命周期成本降低的关注为我们的下一代产品(代号为“Mistral”)奠定了基础,其从根本上更简单、成本更低的设计将使我们能够直接与市场上价格最具竞争力的储能系统竞争。
摘要本文旨在概述我们的方法,以区分人类生成的文本和具有模型融合方法的生成AI模型。我们的方法包括三个步骤:首先,我们将PAN的竞争数据集扩展到Clef 2024的竞争数据集,其中包括来自著名的数据科学和机器学习竞赛平台Kaggle的外部数据集,并应用Levenshtein距离算法算法纠正拼写错误的单词。然后,基于共享主题并将培训,验证和测试数据集形成文本对的数据集。第二,我们训练一个微调的BERT作为基本模型和使用R-Drop方法的BERT来减轻过度拟合问题。最后,这两个模型是使用合奏学习技术和投票策略组合的。我们的实验结果表明,融合模型的ROC-AUC度量为0.932,比基线模型Fast-DetectGpt(Mistral)提高了5.6%。
BERT en 110M .64 - .69 - .16 - BERT de 110M .69 - .68 - .22 - BERT db 110M .71 - .69 - .23 - Gelectra 110M .50 - .69 - .24 - GBERT 110M .72 - .69 - .23 - Gelectra 335M .52 - .56 - .19 - GBERT 337M .73 - .71 - .21 - Electra 335M - .88 - .64 - .08 Roberta 335M - .90 - .77 - .27 # Shots LeoLM 0 7B .61 - - - - - 5 .52 Mistral 0 7.24B .30 - - - - - 5 .55 Llama 3 0 8B .67 .78 - - - - 5 .59 .82 gpt 3.5 0 - .68 .89 .40 .46 .17 .16 5 .72 .89 .43 .47 .20 .20 .18 gpt 4 0 - .70 .87 .87 .36 .41 .20 .20 .15 5 .76 .89 .89 .89 .41 .43 .43 .43 .22 .18
传统上,游戏中的AI代理是使用加强学习主导的。随着各种大型语言模型(LLM)的增强,正在探索一个新的范式,这些模型可以直接充当AI代理,或者在游戏环境中通过增强学习增强。我们的项目旨在通过利用诸如流行的动作视频游戏“ Street Fighter II”(例如,利用Mistral 7B或Multomodal LLM)等最新的可访问的仅访问的文本LLM,例如在流行的动作视频游戏“ Street Fighter II”中继续探索LLM的游戏玩法表现。我们主要想讨论两个问题:1)LLM是否不仅可以编码指令,而且还可以直接用作鉴于观察结果的行为的代理策略,以及2)LLMS是否可以通过从所学文本中继承的预训练的知识来促进RL任务。
阵风战斗机计划第五批生产批次(从 2027 年起交付 42 架 F4 标准飞机);额外提供109门凯撒Mk II炮和155毫米弹药; 420 辆“蝎子”计划的 Serval 轻型多用途装甲车;七艘近海巡逻船;戴高乐号航空母舰在第三次重大技术停机期间进行现代化升级;八架 NH90 直升机供特种部队使用;继续开展未来空间情报和图像仪器(IRIS)计划的筹备工作。 329 枚西北风导弹和 1,300 枚阿凯隆 MP 导弹
最近的研究表明,从人类反馈(RLHF)中学习的教学调整(IT)和加强学习会显着提高大语言模型(LMS)的能力。尽管这些调整方法可以帮助将模范与人类目标保持一致并产生高质量的文本,但对它们的潜在不利影响知之甚少。在这项工作中,我们对IT和RLHF的影响进行了对LMS的做法和推理的影响,重点是三种认知偏见(诱饵效应,确定性效应和信仰偏见),这些偏见都众所周知,这些偏见都会影响人类的决策 - 做出和推理。我们的发现突出了这些偏见在GPT-3,Mistral和T5家族中的各种偏见中的存在。值得注意的是,我们发现在经过指导调节的模型中,Bi-ASE的存在更强,例如Flan-T5,Mistral-Instruct,GPT3.5和GPT4。我们的工作构成了理解教学调整LMS认知偏见的一步,这对于开发更可靠和不可用的语言模型至关重要。1
暴露于离子辐射的主要关注点是患疾病的风险。高剂量的辐射会导致造成癌症的明显损害,但低剂量辐射(LDR)的影响不那么清晰,更具争议性。为了进一步研究这一点,它需要专注于受辐射影响的基本生物结构。最近的工作表明,大型语言模型(LLM)可以有效地预测蛋白质结构和其他生物学特性。这项研究的目的是利用诸如Mistral,Llama 2和Llama 3之类的开源LLM,以预先证明辐射诱导的蛋白质的改变以及在Spe-CificeAses的存在下蛋白质蛋白侵蚀(PPIS)的动力学。我们表明,在神经退行性疾病,代谢性疾病和癌症的背景下,微调这些模型可以预测蛋白质相互作用的最先进性能。我们的发现有助于理解辐射暴露与疾病机制之间的复杂关系的持续努力,以说明当前构成模型的细微能力和局限性。代码和数据可用于以下网址:https://github.com/rengel2001/ surp_2024
摘要 — 本研究探讨了将检索增强生成 (RAG) 集成到已使用混合专家 (MoE) 的 Mistral 8x7B 大型语言模型 (LLM) 中,以解决其在复杂信息检索和推理任务中现有的局限性。通过利用 Google BIG-Bench 数据集,我们进行了广泛的定量和定性分析,以评估增强模型的性能。结果显示准确率、精确率、召回率和 F1 分数均有显著提高,凸显了增强模型在生成语境丰富、准确且细致入微的响应方面的卓越能力。这种集成展示了一种克服传统 LLM 固有局限性的有希望的方法,标志着人工智能研究的关键进展。我们的研究结果有助于持续开发更具适应性、更高效、更智能的人工智能系统,为人工智能在各个领域的应用开辟新的途径。该研究承认与数据集范围和计算需求相关的限制,并为未来的研究提出了进一步完善和扩展模型适用性的方向。
通过社交媒体和变形金刚模型了解躁郁症:挑战和见解葡萄etsrivastava*,Lokesh Boggavarapu*,Anthony Shin*,Anthony Shin*,Avisek Datta,Yingda Lu,runa bhaumik **伊利诺伊州芝加哥**伊利诺伊州芝加哥大学的同等贡献者**相应的社交媒体* (BD)仍然显着未充满意。复杂性是由与抑郁和焦虑相关的语言模式的重叠产生的,使准确的识别挑战。本研究旨在基准在Reddit帖子上训练的各种变压器模型的性能,以将BD与其他心理健康状况区分开。使用高性能生成AI模型(GPT-4O)作为基准,分析表明某些开放小型模型(ex。MISTRAL,LLAMA)在捕获与BD相关的微妙语言线索方面表现出色,以高精度和召回率达到高达0.86的F1得分。但是,BD经常被错误分类为抑郁症(23%–51%),正常(2%–41%)和焦虑症(1%–7%),强调了对改进方法的需求。该研究强调了特定于域数据的重要性以及更细微的模型以增强BD检测准确性,为更有效的心理健康监测和及时干预铺平了道路。